Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 167: 153-162, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358729

ABSTRACT

The impacts of high-intensity light (HIL) (4 h) and UV-B radiation (1 h) on the photosynthetic activity, content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes (ascorbate peroxidase (APX) and guaiacol-dependent peroxidase (GPX)), content of thiobarbituric acid reactive substances (TBARs), expression of some light-regulated genes in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) hy4 mutant of A. thaliana Col-0 plants grown under blue light (BL) were studied. HIL and UV-B treatments led to decreases in the photosynthetic rate (Pn), photochemical activity of PSII (FV/FM) and PSII performance index (PIABS) of WT and mutant plants grown under high-intensity BL (HBL) and moderate intensity BL (MBL). However, in HBL plants, the decrease in the photosynthetic activity in hy4 plants was significantly greater than that in WT plants. In addition, hy4 HBL plants demonstrated lowered UAP and carotenoid contents as well as lower activity of APX and GPX enzymes. The difference in the decline in the photosynthetic activity of WT and hy4 plants grown at MBL in response to HIL was nonsignificant, while that in response to UV-B was small. We assume that the deficiency in cryptochrome 1 under HIL irradiation disrupts the interaction between HY5 and HFR1 transcription factors and photoreceptors, which affects the transcription of light-induced genes, such as CAB1, PSY and PAL1 linked to carotenoid and flavonoid biosynthesis. It was concluded that PA stress resistance in WT and hy4 plants depends on the light intensity and reduced stress resistance of hy4 at HBL, is likely linked to low UAP and carotenoid contents as well as lowered APX and GPX enzyme activities in hy4 mutants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascorbate Peroxidases , Peroxidase , Photosynthesis , Antioxidants , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascorbate Peroxidases/metabolism , Gene Expression Regulation, Plant , Peroxidase/genetics , Peroxidase/metabolism , Reactive Oxygen Species , Ultraviolet Rays
2.
Biochim Biophys Acta Bioenerg ; 1862(8): 148445, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33940040

ABSTRACT

The effects of high-intensity light (HIL, 4 and 24 h) and UV-B (1 h) on the net photosynthesis rate, activity of photosystem II (PSII), content of photosynthetic pigments, anthocyanin and UV-absorbing pigments as well as the expression of certain light-responsive genes (HY5,CAB1) chalcone synthase (CHS) and main antioxidants enzyme genes (APX1, GPX and GR) in the leaves of phyB and phyA mutant A. thaliana plants were studied. Both UV-B and 4 and 24 h HIL decreased the PSII maximum quantum yield (Fv/Fm), PSII performance index (PIABS), photosynthesis and respiration rates in plants. Moreover, all stress treatments increased the dissipation of the absorbed energy (DI0/RC) as well as the flux of absorbed energy per RC (ABS/RC). The maximal changes in photosynthesis and chlorophyll fluorescence parameters were observed in the phyB mutant. The WT and the phyA mutant showed similar responses. In addition, the phyB mutant exhibited decreases in the expression of genes encoding enzyme CHS, the transcription factor HY5 and the antioxidant enzymes APX1 and GPX. One of the possible mechanisms protecting the photosynthetic apparatus from light excess or UV radiation is the elevated content of various pigments that can act as antioxidants or optical filters. We assume that the greater decrease in photosynthetic activity in the phyB mutant under HIL and UV-B conditions was due to the decreased content of carotenoids and UV-absorbing pigments in this mutant.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/radiation effects , Photosynthesis , Plant Leaves/metabolism , Ultraviolet Rays , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Light , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...