Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 151(1): 42-52, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30567709

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure-volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin's PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin's stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.


Subject(s)
Diastole/drug effects , Heart Failure/drug therapy , Metformin/pharmacology , Protein Kinases/metabolism , Animals , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Heart Failure/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Phosphorylation/drug effects , Stroke Volume/drug effects
2.
J Mol Cell Cardiol ; 108: 24-33, 2017 07.
Article in English | MEDLINE | ID: mdl-28476659

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome, characterized by increased diastolic stiffness and a preserved ejection fraction, with no effective treatment options. Here we studied the therapeutic potential of exercise for improving diastolic function in a mouse model with HFpEF-like symptoms, the TtnΔIAjxn mouse model. TtnΔIAjxn mice have increased diastolic stiffness and reduced exercise tolerance, mimicking aspects of HFpEF observed in patients. We investigated the effect of free-wheel running exercise on diastolic function. Mechanical studies on cardiac muscle strips from the LV free wall revealed that both TtnΔIAjxn and wildtype (WT) exercised mice had a reduction in passive stiffness, relative to sedentary controls. In both genotypes, this reduction is due to an increase in the compliance of titin whereas ECM-based stiffness was unaffected. Phosphorylation of titin's PEVK and N2B spring elements were assayed with phospho-site specific antibodies. Exercised mice had decreased PEVK phosphorylation and increased N2B phosphorylation both of which are predicted to contribute to the increased compliance of titin. Since exercise lowers the heart rate we examined whether reduction in heart rate per se can improve passive stiffness by administering the heart-rate-lowering drug ivabradine. Ivabradine lowered heart rate in our study but it did not affect passive tension, in neither WT nor TtnΔIAjxn mice. We conclude that exercise is beneficial for decreasing passive stiffness and that it involves beneficial alterations in titin phosphorylation.


Subject(s)
Diastole , Heart Failure/physiopathology , Physical Conditioning, Animal , Adaptation, Physiological , Animals , Benzazepines/pharmacology , Biomarkers , Cardiovascular Agents/pharmacology , Connectin/genetics , Connectin/metabolism , Disease Models, Animal , Echocardiography , Gene Expression , Heart Failure/diagnosis , Heart Failure/etiology , Heart Failure/therapy , Heart Function Tests , Ivabradine , Male , Mice , Myocardial Contraction , Myocardium/metabolism , Phosphorylation
3.
Circulation ; 134(15): 1085-1099, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27630136

ABSTRACT

BACKGROUND: Left ventricular (LV) stiffening contributes to heart failure with preserved ejection fraction (HFpEF), a syndrome with no effective treatment options. Increasing the compliance of titin in the heart has become possible recently through inhibition of the splicing factor RNA binding motif-20. Here, we investigated the effects of increasing the compliance of titin in mice with diastolic dysfunction. METHODS: Mice in which the RNA recognition motif (RRM) of one of the RNA binding motif-20 alleles was floxed and that expressed the MerCreMer transgene under control of the αMHC promoter (referred to as cRbm20ΔRRM mice) were used. Mice underwent transverse aortic constriction (TAC) surgery and deoxycorticosterone acetate (DOCA) pellet implantation. RRM deletion in adult mice was triggered by injecting raloxifene (cRbm20ΔRRM-raloxifene), with dimethyl sulfoxide (DMSO)-injected mice (cRbm20ΔRRM-DMSO) as the control. Diastolic function was investigated with echocardiography and pressure-volume analysis; passive stiffness was studied in LV muscle strips and isolated cardiac myocytes before and after elimination of titin-based stiffness. Treadmill exercise performance was also studied. Titin isoform expression was evaluated with agarose gels. RESULTS: cRbm20ΔRRM-raloxifene mice expressed large titins in the hearts, called supercompliant titin (N2BAsc), which, within 3 weeks after raloxifene injection, made up ≈45% of total titin. TAC/DOCA cRbm20ΔRRM-DMSO mice developed LV hypertrophy and a marked increase in LV chamber stiffness as shown by both pressure-volume analysis and echocardiography. LV chamber stiffness was normalized in TAC/DOCA cRbm20ΔRRM-raloxifene mice that expressed N2BAsc. Passive stiffness measurements on muscle strips isolated from the LV free wall revealed that extracellular matrix stiffness was equally increased in both groups of TAC/DOCA mice (cRbm20ΔRRM-DMSO and cRbm20ΔRRM-raloxifene). However, titin-based muscle stiffness was reduced in the mice that expressed N2BAsc (TAC/DOCAcRbm20ΔRRM-raloxifene). Exercise testing demonstrated significant improvement in exercise tolerance in TAC/DOCA mice that expressed N2BAsc. CONCLUSIONS: Inhibition of the RNA binding motif-20-based titin splicing system upregulates compliant titins, which improves diastolic function and exercise tolerance in the TAC/DOCA model. Titin holds promise as a therapeutic target for heart failure with preserved ejection fraction.


Subject(s)
Diastole/genetics , Exercise Tolerance/genetics , Heart Failure/genetics , RNA-Binding Proteins/genetics , Ventricular Function, Left/genetics , Animals , Compliance , Connectin/physiology , Diastole/physiology , Disease Models, Animal , Heart Failure/metabolism , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/metabolism , Mice , Mice, Transgenic , RNA-Binding Motifs/genetics , Stroke Volume/physiology , Ventricular Function, Left/physiology
4.
Toxicol Sci ; 127(1): 246-55, 2012 May.
Article in English | MEDLINE | ID: mdl-22367689

ABSTRACT

Histone deacetylase 6 (HDAC6) is known as a cytoplasmic enzyme that regulates cell migration, cell adhesion, and degradation of misfolded proteins by deacetylating substrates such as α-tubulin and Hsp90. When HaCaT keratinocytes were exposed to 1-200µM sodium arsenite, we observed perinuclear localization of HDAC6 within 30 min. Although the overall level of HDAC6 protein did not change, sodium arsenite caused an increase of HDAC6 in ribosomal fractions. Separation of ribosomal subunits versus intact ribosomes or polysomes indicated that HDAC6 was mainly detected in 40/43S fractions containing the small ribosomal subunit in untreated cells but was associated with 40/43S and 60/80S ribosomal fractions in arsenite-treated cells. Immunocytochemistry studies revealed that arsenite caused colocalization of HDAC6 with the ribosomal large and small subunit protein L36a and S6. Both L36a and S6 were detected in the immunocomplex of HDAC6 isolated from arsenite-treated cells. The observed physical interaction of HDAC6 with ribosomes pointed to a role of HDAC6 in stress-induced protein translation. Among arsenite stress-induced proteins, de novo Nrf2 protein translation was inhibited by Tubastatin A. These data demonstrate that HDAC6 was recruited to ribosomes, physically interacted with ribosomal proteins, and regulated de novo protein translation in keratinocytes responding to arsenite stress.


Subject(s)
Arsenites/toxicity , Environmental Pollutants/toxicity , Gene Expression Regulation/drug effects , Histone Deacetylases/metabolism , Oxidative Stress/drug effects , Ribosomes/drug effects , Sodium Compounds/toxicity , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Electrophoresis, Polyacrylamide Gel , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Histone Deacetylase 6 , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Ribosomal Protein S6/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...