Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683666

ABSTRACT

Deep Eutectic Solvents (DES) were investigated as new reaction media for the synthesis of alkyl glycosides catalyzed by the thermostable α-amylase from Thermotoga maritima Amy A. The enzyme was almost completely deactivated when assayed in a series of pure DES, but as cosolvents, DES containing alcohols, sugars, and amides as hydrogen-bond donors (HBD) performed best. A choline chloride:urea based DES was further characterized for the alcoholysis reaction using methanol as a nucleophile. As a cosolvent, this DES increased the hydrolytic and alcoholytic activity of the enzyme at low methanol concentrations, even when both activities drastically dropped when methanol concentration was increased. To explain this phenomenon, variable-temperature, circular dichroism characterization of the protein was conducted, finding that above 60 °C, Amy A underwent large conformational changes not observed in aqueous medium. Thus, 60 °C was set as the temperature limit to carry out alcoholysis reactions. Higher DES contents at this temperature had a detrimental but differential effect on hydrolysis and alcoholysis reactions, thus increasing the alcoholyisis/hydrolysis ratio. To the best of our knowledge, this is the first report on the effect of DES and temperature on an enzyme in which structural studies made it possible to establish the temperature limit for a thermostable enzyme in DES.


Subject(s)
Bacterial Proteins/metabolism , Glycosides/metabolism , Solvents/chemistry , Thermotoga maritima/enzymology , alpha-Amylases/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Choline/chemistry , Circular Dichroism , Enzyme Stability , Hot Temperature , Hydrogen Bonding , Hydrolysis , Methanol/chemistry , Protein Conformation , Urea/chemistry , alpha-Amylases/chemistry
2.
Carbohydr Res ; 404: 46-54, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25665778

ABSTRACT

Cyclodextrin glycosyltransferases (CGTase) are reported to selectively catalyze α(1 → 4)-glycosyl transfer reactions besides showing low hydrolytic activity. Here, the effect of the anomeric configuration of the glycosyl acceptor on the regioselectivity of CGTase catalyzed glycosylations was investigated. For this purpose, the α and ß anomers of p-nitrophenyl-D-glucopyranoside were used as glycosyl acceptors, Bacillus macerans and Thermoanaerobacter sp. CGTases were used as biocatalysts and ß-cyclodextrin as the glycosyl donor. As expected, p-nitrophenyl-α-D-glucopyranosyl-(1 → 4)-O-α-D-glucopyranoside was produced when p-nitrophenyl-α-D-glucopyranoside was used as acceptor with B. macerans CGTase. Surprisingly, when p-nitrophenyl-ß-D-glucopyranoside was used as glycosyl acceptor, besides the expected α(1 → 4)-glycosylation products both α(1 → 3)- and α(1 → 6)-transfer products were also obtained. This unexpected change in B. macerans CGTase regioselectivity leading to α(1 → 4)-, α(1 → 3)- and α(1 → 6)-glycosylation products was also observed for Thermoanaerobacter sp. CGTase with the ß anomer. It is shown, applying time course analyses, that all isomers can be synthesized efficiently by adequate selection of enzyme and reaction conditions. In fact, when using Thermoanaerobacter sp. CGTase the yield of p-nitrophenyl-ß-D-isomaltoside (the α(1 → 6)-transfer product) was the highest at long reaction time (19% yield). The previously unknown capacity of α(1 → 6)-glycosidic linkages formation by CGTases demonstrates an unexpected broader regioselectivity of CGTases in glycosyl-transfer reactions as well as an acceptor dependent transfer selectivity.


Subject(s)
Glucosides/chemical synthesis , Glucosyltransferases/metabolism , Bacillus/enzymology , Bacterial Proteins/metabolism , Catalysis , Glucosides/chemistry , Glycosylation , Substrate Specificity , Thermoanaerobacter/enzymology , beta-Cyclodextrins/chemistry
3.
Anal Bioanal Chem ; 406(13): 3157-66, 2014 May.
Article in English | MEDLINE | ID: mdl-24664407

ABSTRACT

Monitoring the dispersed phase of an oil-in-water (O-W) emulsion by means of Fourier transform infrared (FTIR) spectroscopy is a challenging task, restricted to the continuous phase that is in contact with the FTIR probe. Nonetheless, real-time measurement and kinetic analysis by FTIR, including analysis of the dispersed, often non-polar phase containing substrates and/or products, is desirable. Enzymatic hydrolysis of sunflower oil was performed in an O-W emulsion. After separation of the oil phase by use of a newly developed µ-membrane module, infrared spectra were collected using an attenuated total reflectance (ATR) cell. Different chemometric models were calibrated using the partial least squares (PLS) algorithm. Online application of a chemometric model based on the FTIR spectra enabled real-time monitoring of free fatty acid concentrations in the oil phase.


Subject(s)
Emulsions , Fatty Acids, Nonesterified/analysis , Membranes, Artificial , Online Systems , Plant Oils/analysis , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Hydrolysis , Kinetics , Least-Squares Analysis , Lipase/metabolism , Sunflower Oil
4.
Biotechnol Bioeng ; 109(6): 1479-89, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22275046

ABSTRACT

A solvent-free, chemoenzymatic reaction sequence for the enantioselective synthesis of ß-amino acid esters has been kinetically and thermodynamically characterized. The coupled sequence comprises a thermal aza-Michael addition of cheap starting materials and a lipase catalyzed aminolysis for the kinetic resolution of the racemic ester. Excellent ee values of >99% were obtained for the ß-amino acid ester at 60% conversion. Kinetic constants for the aza-Michael addition were obtained by straightforward numerical integration of second-order rate equations and nonlinear fitting of the progress curves. A different strategy had to be devised for the biocatalytic reaction. Initially, a simplified Michaelis-Menten model including product inhibition was developed for the reaction running in THF as an organic solvent. Activity based parameters were used instead of concentrations in order to facilitate the transfer of the kinetic model to the solvent-free system. Observed solvent effects not accounted for by the use of thermodynamic activities were incorporated into the kinetic model. Enzyme deactivation was observed to depend on the ratio of the applied substrates and also included in the kinetic model. The developed simple model is in very good agreement with the experimental data and allows the simulation and optimization of the solvent-free process.


Subject(s)
Amino Acids/metabolism , Esters/metabolism , Lipase/metabolism , Enzymes, Immobilized , Fungal Proteins , Kinetics , Models, Chemical , Models, Theoretical
5.
Beilstein J Org Chem ; 7: 1449-67, 2011.
Article in English | MEDLINE | ID: mdl-22238518

ABSTRACT

This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development.

SELECTION OF CITATIONS
SEARCH DETAIL
...