Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34722864

ABSTRACT

We review numerical methods for simulations of cosmic ray (CR) propagation on galactic and larger scales. We present the development of algorithms designed for phenomenological and self-consistent models of CR propagation in kinetic description based on numerical solutions of the Fokker-Planck equation. The phenomenological models assume a stationary structure of the galactic interstellar medium and incorporate diffusion of particles in physical and momentum space together with advection, spallation, production of secondaries and various radiation mechanisms. The self-consistent propagation models of CRs include the dynamical coupling of the CR population to the thermal plasma. The CR transport equation is discretized and solved numerically together with the set of MHD equations in various approaches treating the CR population as a separate relativistic fluid within the two-fluid approach or as a spectrally resolved population of particles evolving in physical and momentum space. The relevant processes incorporated in self-consistent models include advection, diffusion and streaming propagation as well as adiabatic compression and several radiative loss mechanisms. We discuss, applications of the numerical models for the interpretation of CR data collected by various instruments. We present example models of astrophysical processes influencing galactic evolution such as galactic winds, the amplification of large-scale magnetic fields and instabilities of the interstellar medium.

2.
Nature ; 531(7594): 341-3, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26934231

ABSTRACT

Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

3.
Nature ; 451(7175): 159-62, 2008 Jan 10.
Article in English | MEDLINE | ID: mdl-18185581

ABSTRACT

Gamma-ray line radiation at 511 keV is the signature of electron-positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511-keV line emission coming from the inner Galactic disk ( approximately 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies >20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511-keV line. For these models, our result implies that up to a few times 10(41) positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter.

4.
Nature ; 439(7072): 45-7, 2006 Jan 05.
Article in English | MEDLINE | ID: mdl-16397491

ABSTRACT

Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century.

SELECTION OF CITATIONS
SEARCH DETAIL
...