Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37901747

ABSTRACT

Preeclampsia (PE), new-onset hypertension during pregnancy alongside organ dysfunction, is a leading cause of morbidity and mortality for the mother and fetus. PE women have activated B cells that produce agonistic autoantibodies to the angiotensin II type 1 receptor (AT1-AA). AT1-AA impairs cerebral blood flow (CBF) autoregulation during pregnancy. Although AT1-AA often remains elevated up to 8 years postpartum, AT1-AA's effect on CBF autoregulation postpartum is unknown. This study examined whether elevated AT1-AA during pregnancy impairs CBF autoregulation postpartum and if this was augmented by infusion of AT1-AA postpartum. AT1-AA was infused into 12-week-old timed-pregnant Sprague Dawley rats beginning on gestational day 14. Uterine artery resistance index (UARI) was measured on gestational day 18 as a measure of endothelial dysfunction associated with PE. Dams were allowed to deliver. One group was given a second infusion of AT1-AA (50% perinatal dose mimicking levels observed in postpartum PE women) at 9 weeks postpartum. After postpartum week 10, mean arterial pressure (MAP) was measured in conscious rats and CBF autoregulation was measured by laser Doppler flowmetry. AT1-AA during pregnancy increased UARI (P<0.05). AT1-AA during pregnancy did not affect MAP postpartum but did impair CBF autoregulation postpartum. Infusion of AT1-AA postpartum significantly elevated blood pressure (P<0.01) but did not further impair CBF autoregulation. This study demonstrates that circulating AT1-AA during pregnancy causes impairment of CBF autoregulation well into the postpartum period indicating that elevated AT1-AA leads to long-term cerebrovascular consequences. Targeting AT1-AA may prevent cerebrovascular effects associated with PE during pregnancy and postpartum.

2.
J Cardiovasc Pharmacol ; 80(2): 206-209, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35575984

ABSTRACT

ABSTRACT: Septic shock is life-threatening organ dysfunction due to a dysregulated response to infection. It is a leading cause of death caused by the excessive release of cytokines and inflammatory mediators in response to bacterial endotoxins. It produces hypotension refractory to vasoconstrictors leading to tissue hypoperfusion and multiple organ failure. Despite intensive investigation, there still are no specific pharmacologic treatments. Current therapy relies on supportive care, including antibiotics, fluid resuscitation, corticosteroids, and pressor agents. This commentary summarizes little-known previous observations that inhibition of vascular 20-hydroxyeicosatetraenoic acid (20-HETE) by nitric oxide plays a key role in sepsis. It also highlights the new and exciting current report by Tunctan et al (2022) in this issue of Journal of Cardiovascular Pharmacology that administration of a 20-HETE mimetic can prevent lipopolysaccharide-induced vascular hyporeactivity, hypotension, and tachycardia in rats by activating the recently discovered GPR75/20-HETE receptor. Overall, these results provide a compelling case for initiating 20-HETE clinical trials to prevent hypotension, multiple organ failure, and death in septic shock.


Subject(s)
Hypotension , Sepsis , Shock, Septic , Animals , Hypotension/chemically induced , Multiple Organ Failure , Nitric Oxide Synthase Type II/metabolism , Rats , Shock, Septic/drug therapy
3.
Am J Physiol Heart Circ Physiol ; 322(2): H246-H259, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34951541

ABSTRACT

Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.


Subject(s)
Dementia, Vascular/drug therapy , Diabetic Angiopathies/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sorbitol/analogs & derivatives , Animals , Arterioles/drug effects , Arterioles/physiopathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiopathology , Cells, Cultured , Cerebrovascular Circulation , Cognition , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/physiopathology , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sorbitol/pharmacology , Sorbitol/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...