Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(24): 14462-14471, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29210280

ABSTRACT

Isocyanic acid (HNCO) is a known toxic species and yet the relative importance of primary and secondary sources to regional HNCO and population exposure remains unclear. Off-road diesel fuel combustion has previously been suggested to be an important regional source of HNCO, which implies that major industrial facilities such as the oil sands (OS), which consume large quantities of diesel fuel, can be sources of HNCO. The OS emissions of nontraditional toxic species such as HNCO have not been assessed. Here, airborne measurements of HNCO were used to estimate primary and secondary HNCO for the oil sands. Approximately 6.2 ± 1.1 kg hr-1 was emitted from off-road diesel activities within oil sands facilities, and an additional 116-186 kg hr-1 formed from the photochemical oxidation of diesel exhaust. Together, the primary and secondary HNCO from OS operations represent a significant anthropogenic HNCO source in Canada. The secondary HNCO downwind of the OS was enhanced by up to a factor of 20 relative to its primary emission, an enhancement factor significantly greater than previously estimated from laboratory studies. Incorporating HNCO emissions and formation into a regional model demonstrated that the HNCO levels in Fort McMurray (∼10-70 km downwind of the OS) are controlled by OS emissions; > 50% of the monthly mean HNCO arose from the OS. While the mean HNCO levels in Fort McMurray are predicted to be below the 1000 pptv level associated with potential negative health impacts, (∼25 pptv in August-September), an order of magnitude increase in concentration is predicted (250-600 pptv) when the town is directly impacted by OS plumes. The results here highlight the importance of obtaining at-source HNCO emission factors and advancing the understanding of secondary HNCO formation mechanisms, to assess and improve HNCO population exposure predictions.


Subject(s)
Cyanates , Oil and Gas Fields , Photochemical Processes , Air Pollutants , Canada , Vehicle Emissions
2.
Environ Pollut ; 230: 72-80, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28649043

ABSTRACT

Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels.


Subject(s)
Air Pollutants/analysis , Biofuels/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Aerosols , Biofuels/statistics & numerical data , Carbon , Cooking , Environmental Monitoring , Gasoline , Particle Size , Soot , Sulfur/analysis
3.
Proc Natl Acad Sci U S A ; 114(19): E3756-E3765, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439021

ABSTRACT

Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69-89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.


Subject(s)
Mining , Petroleum , Volatile Organic Compounds/analysis , Alberta
4.
Nature ; 534(7605): 91-4, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251281

ABSTRACT

Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Atmosphere/chemistry , Oil and Gas Fields , Oil and Gas Industry , Alberta , Climate , Human Activities , Hydrocarbons/analysis , Hydrocarbons/chemistry , Particulate Matter/analysis , Particulate Matter/chemistry , Petroleum , Volatilization
5.
Environ Sci Technol ; 46(9): 4819-28, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22309316

ABSTRACT

Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO(2) measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies.


Subject(s)
Soot/analysis , Vehicle Emissions/analysis , Incandescence , Lasers , Ontario
6.
Environ Sci Technol ; 45(7): 2790-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21405082

ABSTRACT

The neutralization of acidic aerosols by ammonia has been studied through experiments which combine ambient air with laboratory generated sulfuric acid aerosol. Results indicated that acidic aerosol mixed with organic free air and ammonia was neutralized on a time scale<1 min, consistent with expectations. However, in the presence of ambient organic gases and ammonia, the rate of aerosol neutralization is significantly reduced. This reduction in ammonia uptake was concurrent with an increase in the amount of particle phase organics. A steady state in the NH4+/SO4(2-) in the presence of organic gases was established on time scales of 10 min to several hours, corresponding to NH3 uptake coefficients in the range of 4×10(-3)-2×10(-4). The degree to which neutralization was slowed was dependent upon the initial ammonia concentration and the organic mass added to the aerosols. These results suggest that inorganic equilibrium thermodynamic models may overestimate the rate of ammonia uptake and that ambient particles may remain acidic for longer than previously expected.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Ammonia/chemistry , Organic Chemicals/chemistry , Sulfuric Acids/chemistry , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Atmosphere/chemistry , Environmental Monitoring , Sulfuric Acids/analysis
7.
Environ Sci Technol ; 38(5): 1471-9, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15046349

ABSTRACT

Organic compounds contribute an appreciable mass to particulate matter and thus impact the hygroscopic and radiative properties of an aerosol distribution. Being able to predict the chemical and physical properties of aerosols based on their size and composition is critical to assessing their impact on air quality, visibility, and climate change. In this study, a comparison was performed between an equilibrium and a kinetic model for simulating organic aerosol formation during the photooxidation of toluene/NO/isopropyl nitrite mixtures. Both models used an explicit gas-phase toluene scheme (University of Leeds Master Chemical Mechanism version 3.0) and provided a prediction of individual products partitioned to the aerosol phase. After incorporating a heterogeneous wall reaction scheme regenerating NOx from HNO3 and HNO2, the gas-phase scheme was able to simulate the observed toluene decay within 5% and NO decay within 30% for all of the chamber experiments. The models reproduced the general magnitude of the aerosol yields but suggest a weaker trend dependence on aerosol mass loading. A few nonvolatile compounds were predicted to compose the majority of the aerosol-phase mass with multifunctional organic nitrates being the dominant organic aerosol functional group. The hygroscopic diameter growth factor for the organic phase was predicted to be 1.1 at a relative humidity of 79%. We conclude with a list of recommended laboratory experiments to help constrain and validate aerosol process models.


Subject(s)
Aerosols/analysis , Models, Theoretical , Nitrogen Oxides/chemistry , Toluene/chemistry , Aerosols/chemistry , Forecasting , Kinetics , Oxidation-Reduction , Particle Size , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...