Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 111(6): 1543-1555, 2022 06.
Article in English | MEDLINE | ID: mdl-35041831

ABSTRACT

Members of the IQ Consortium ″Working Group on Characterization on Amorphous Solid Dispersions″ shares here a perspective on the analytical challenges, and limitations of detecting low levels of crystalline drug substance in amorphous solid dispersions (ASDs) and associated drug products. These companies aim to employ highly sensitive commercially available analytical technologies to guide development, support control strategies, and enable registration of quality products. We hope to promote consistency in development and registration approaches and guide the industry in development of "characterization best practices" in the interest of providing high quality products for patients. The first half of this perspective highlights the unique challenges of analytical methodologies to monitor crystalline drug substance in ASDs and their associated drug products. Challenges around use of limit tests, analyte spiking experiments, and method robustness are also underscored. The latter half describes the merits and limitations of the diverse analytical "toolbox" (such as XRPD, NIR and DSC), which can be readily applied during development and, in some cases, considered for potential application and validation in the commercial QC setting when necessary.


Subject(s)
Chemistry, Pharmaceutical , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical/methods , Crystallization/methods , Humans , Solubility , X-Ray Diffraction
2.
Eur J Pharm Sci ; 165: 105921, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34229077

ABSTRACT

For oral solid dosage forms, disintegration and dissolution properties are closely related to the powders and particles used in their formulation. However, there remains a strong need to characterize the impact of particle structures on tablet compaction and performance. Three-dimensional non-invasive tomographic imaging plays an increasingly essential role in the characterization of drug substances, drug product intermediates, and drug products. It can reveal information hidden at the micro-scale which traditional characterization approaches fail to divulge due to a lack of resolution. In this study, two batches of spray-dried particles (SDP) and two corresponding tablets of an amorphous product, merestinib (LY2801653), were analyzed with 3D X-Ray Microscopy. Artificial intelligence-based image analytics were used to quantify physical properties, which were then correlated with dissolution behavior. The correlation derived from the image-based characterization was validated with conventional laboratory physical property measurements. Quantitative insights obtained from image-analysis including porosity, pore size distribution, surface area and pore connectivity helped to explain the differences in dissolution behavior between the two tablets, with root causes traceable to the microstructure differences in their corresponding SDPs.


Subject(s)
Artificial Intelligence , Microscopy, Electron, Scanning , Particle Size , Powders , Solubility , Tablets , X-Rays
3.
Anal Chem ; 92(1): 1171-1178, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31790194

ABSTRACT

Stochastic phase transformations within individual crystalline particles were recorded by integration of second harmonic generation (SHG) imaging with differential scanning calorimetry (DSC). The SHG activity of a crystal is highly sensitive to the specific molecular packing arrangement within a noncentrosymmetric lattice, providing access to information otherwise unavailable by conventional imaging approaches. Consequently, lattice transformations associated with dehydration/desolvation events were readily observed by SHG imaging and directly correlated to the phase transformations detected by the DSC measurements. Following studies of a model system (urea), stochastic differential scanning calorimetry (SDSC) was performed on trehalose dihydrate, which has a more complex phase behavior. From these measurements, SDSC revealed a broad diversity of single-particle thermal trajectories and direct evidence of a "cold phase transformation" process not observable by the DSC measurements alone.

4.
Appl Spectrosc ; 72(11): 1594-1605, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29896972

ABSTRACT

A statistical model enables auto-calibration of second harmonic generation (SHG) images for quantifying trace crystallinity within amorphous solid dispersions (ASDs) over a wide dynamic range of crystallinity. In this paper, we demonstrate particle-counting approaches for quantifying trace crystallinity, combined with analytical expressions correcting for particle overlap bias in higher crystallinity regimes to extend the continuous dynamic range of standard particle-counting algorithms through to the signal averaging regime. The reliability of the values recovered by these expressions was demonstrated with simulated data as well as experimental data obtained for an amorphous solid dispersion formulation containing evacetrapib, an Eli Lilly and Company compound. Since particle counting independently recovers the crystalline volume and the SHG intensity, the average SHG intensity per unit volume can be used as an internal calibrant for quantifying crystallinity at higher volume fractions, for which particle counting is no longer applicable.


Subject(s)
Anticholesteremic Agents/chemistry , Benzodiazepines/chemistry , Second Harmonic Generation Microscopy/methods , Algorithms , Calibration , Crystallization , Spectroscopy, Fourier Transform Infrared , Tablets , X-Ray Diffraction
5.
J Pharm Biomed Anal ; 142: 307-314, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28531833

ABSTRACT

The purpose of this work was to develop a meaningful in vitro dissolution method for evacetrapib spray-dried dispersion (SDD) tablets that is discriminating for crystalline drug substance (DS) content. Justification of the method conditions included evaluation of dissolution media, rotation speed, surfactant selection and level of surfactant to achieve sink conditions. Discrimination was illustrated by testing SDD tablets spiked with 10%, 20%, and 30% crystalline DS. The results demonstrated a 13%, 22% and 32% drop in the dissolution end point, respectively, as compared to unspiked SDD tablets. Additionally, tablets containing crystalline DS and tablets containing SDD were tested in a relative bioavailability (RBA) study. Utilizing the proposed dissolution method, the dissolution end point of SDD tablets was determined to be approximately 4 fold higher than that of the tablets containing crystalline DS. These results compare favourably to the in vivo RBA study results where SDD tablets had a 4.6 fold increase in exposure compared to tablets containing crystalline DS.


Subject(s)
Biological Availability , Solubility , Surface-Active Agents , Tablets
6.
Biomacromolecules ; 9(11): 3277-87, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18937400

ABSTRACT

Properties of Aloe vera galacturonate hydrogels formed via Ca(2+) crosslinking have been studied in regard to key parameters influencing gel formation including molecular weight, ionic strength, and molar ratio of Ca(2+) to COO(-) functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) studies have been conducted on hydrogels formed at specified Ca(2+) concentrations in the presence and absence of Na(+) and K(+) ions in order to assess the feasibility of in situ gelation for controlled delivery of therapeutics. Aqueous Ca(2+) concentrations similar to those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca(2+) to COO (-) functionality, networks may be tailored to provide elastic modulus (G') values between 20 and 20000 Pa. The Aloe vera polysaccharide exhibits time-dependent phase separation in the presence of monovalent electrolytes. Thus the relative rates of calcium induced gelation and phase separation become major considerations when designing a system for in situ delivery applications where both monovalent (Na(+), K(+)) and divalent (Ca(2+)) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly different morphologies are present in gels formed in the presence and absence of 0.15 M NaCl. Curve fitting of theoretical models to experimental release profiles of fluorescein labeled dextrans indicate diffusion rates are related to hydrogel morphology. These studies suggest that for efficient in situ release of therapeutic agents, polymer concentrations should be maintained above the critical entanglement concentration ( Ce, 0.60 wt %) when [Ca(2+)]/[COO(-)] ratios are less than 1. Additionally, the monovalent electrolyte concentration in AvP solutions should not exceed 0.10 M prior to Ca(2+) crosslinking.


Subject(s)
Aloe/chemistry , Calcium/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Polysaccharides/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Osmolar Concentration , Rheology
7.
Biomacromolecules ; 9(2): 472-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18179171

ABSTRACT

A series of highly purified galacturonate polysaccharides have been extracted from the Aloe vera plant and analyzed in terms of chemical composition and molecular weight. This Aloe vera polysaccharide (AvP) has been found to exist as a high molecular weight species and possess a unique chemical composition, including a high galacturonic acid (GalA) content and low degree of methyl ester substitution. These factors facilitate gel formation upon exposure to low concentrations of calcium ions, leading to potential application in formulations designed for in situ nasal or subcutaneous protein delivery. Thorough examination of classic dilute solution properties, the [eta]-M(w), and R(g)-M(w) relationships, persistence length (L(p)), and inherent chain stiffness (B parameter), indicate an expanded random coil in aqueous salt solutions. The critical concentration for transition from dilute to concentrated solution, C(e), was determined by measuring both the zero shear viscosity (eta(o)) and fluorescence emission of the probe molecule 1,8-anilino-1-naphthalene sulfonic acid (1,8-ANS) as a function of polymer concentration. Examination of zeta potential and C(e) as a function of ionic strength indicates that the shift in C(e) from 0.60 to 0.30 wt % is related to an increased occurrence of intermolecular interactions at high salt concentrations. Additionally, dynamic rheology data are presented highlighting the ability of AvP to form gels at low polymer and calcium ion concentrations, exemplifying the technological potential of this polysaccharide for in situ drug delivery.


Subject(s)
Aloe/chemistry , Hexuronic Acids/chemistry , Polysaccharides/chemistry , Gels , Hexuronic Acids/isolation & purification , Polysaccharides/isolation & purification , Rheology , Solubility , Viscosity
8.
Int Immunopharmacol ; 4(14): 1727-37, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15531289

ABSTRACT

Raw materials supplied as Aloe vera L. (sometimes referred to as Aloe barbadensis) samples often contain different composition of low and high molecular weight components when analyzed by size exclusion chromatography. One major reason for variable compositions of commercial A. vera L. materials is that they are produced by different manufacturing techniques. Consistent composition of matter based upon a given standard has been difficult to define. In addition, the method of quantifying and characterization of these commercially available materials has not been agreed upon within the industry. The end user, whether a researcher, a manufacturer, a marketing arm of industry or the consumer, should know that they are receiving a consistent product. A blind study of 32 various A. vera L. samples from different manufacturers, and a prepared sample of fresh A. vera L. gel with the commercial, biologic drug Acemannan Immunostimulanttrade mark, were analyzed for content of high molecular weight (polysaccharides) material by size exclusion chromatography with refractive index detection (SEC/RI) and SEC/RI coupled with multi-angle laser light scattering (MALLS) detection. Results from the SEC/RI analysis showed significant variation in the high molecular weight content, and the MALLS analysis also showed significant variation versus SEC/RI. In addition, HPLC analysis of the anthraquinone content showed that all samples contained significantly less than that of the raw, unwashed aloe gel. The variation of results from all analysis is attributed to differing methods in which the samples were processed by the different manufacturers.


Subject(s)
Aloe/chemistry , Anthraquinones/chemistry , Chromatography, Gel , Indicators and Reagents , Lasers , Molecular Weight , Phytotherapy , Reference Standards , Refractometry , Scattering, Radiation
9.
Biomacromolecules ; 4(4): 956-67, 2003.
Article in English | MEDLINE | ID: mdl-12857079

ABSTRACT

The hydrophobin Sc3 from the fungus Schizophyllum commune assembles from the aqueous phase into ordered structures with substantially different characteristics depending upon experimental conditions. Under the first condition, a vortexing procedure widely reported in the literature, interfacial assembly yields highly ordered, stacked beta-sheets. We have also observed a previously unreported assembly of Sc3 under a second condition, which occurs in a time-dependent manner from quiescent solution. The resulting types of assembled states have been compared utilizing fluorescence techniques, sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting, density gradient centrifugation, and phase contrast and atomic force microscopy. A model based on this study and previous literature is proposed that suggests three distinct states of Sc3: (1) soluble Sc3 consisting of unimers or multimers in micelle-like association, (2) interfacially assembled I-Sc3 with highly ordered, stacked beta-sheets, presumably formed in a templated manner at the air/water interface of microscopic bubbles generated by vortexing, and (3) solution-assembled S-Sc3, a less-ordered structure formed in a time-dependent manner in the absence of an interface.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Schizophyllum/chemistry , Benzothiazoles , Centrifugation, Density Gradient , Fluorescence , Fluorescent Dyes/chemistry , Fungal Proteins/isolation & purification , Microscopy, Atomic Force , Spectrometry, Fluorescence , Thiazoles/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...