Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203538

ABSTRACT

Cellular dysfunction during Parkinson's disease leads to neuroinflammation in various brain regions, inducing neuronal death and contributing to the progression of the disease. Different ion channels may influence the process of neurodegeneration. The peptides Ms 9a-1 and APHC3 can modulate the function of TRPA1 and TRPV1 channels, and we evaluated their cytoprotective effects in differentiated to dopaminergic neuron-like SH-SY5Y cells. We used the stable neuroblastoma cell lines SH-SY5Y, producing wild-type alpha-synuclein and its mutant A53T, which are prone to accumulation of thioflavin-S-positive aggregates. We analyzed the viability of cells, as well as the mRNA expression levels of TRPA1, TRPV1, ASIC1a channels, alpha-synuclein, and tyrosine hydroxylase after differentiation of these cell lines using RT-PCR. Overexpression of alpha-synuclein showed a neuroprotective effect and was accompanied by a reduction of tyrosine hydroxylase expression. A mutant alpha-synuclein A53T significantly increased the expression of the pro-apoptotic protein BAX and made cells more susceptible to apoptosis. Generally, overexpression of alpha-synuclein could be a model for the early stages of PD, while expression of mutant alpha-synuclein A53T mimics a genetic variant of PD. The peptides Ms 9a-1 and APHC3 significantly reduced the susceptibility to apoptosis of all cell lines but differentially influenced the expression of the genes of interest. Therefore, these modulators of TRPA1 and TRPV1 have the potential for the development of new therapeutic agents for neurodegenerative disease treatment.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Parkinson Disease , Sea Anemones , Humans , Animals , Parkinson Disease/drug therapy , alpha-Synuclein/genetics , Tyrosine 3-Monooxygenase , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics
2.
Int J Biol Macromol ; 100: 55-66, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27215901

ABSTRACT

The review analyses data on specific features of aggregation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and possible role of this enzyme in the development of neurodegenerative diseases. Different post-translational modifications of the enzyme are considered: oxidation, nitrosylation, and S-glutathionylation of the active site sulfhydryl groups, as well as phosphorylation, glycation and homocysteinylation of other amino acid residues. Modification of the sulfhydryl groups of the enzyme inhibits the enzymatic activity of GAPDH, resulting in slowdown of glycolysis, and may lead to the dissociation of the cofactor NAD from the active site of the enzyme. The resulting apo-GAPDH (without NAD) is less stable and prone to dissociation, denaturation, and subsequent aggregation. These processes could play a crucial role in the translocation of GAPDH subunits from the cytoplasm into the nucleus, which is linked to the induction of apoptosis. Phosphorylation and glycation of GAPDH are presumably involved in the regulation of protein-protein interactions and intracellular localization of the enzyme. Besides, glycation by dicarbonyl compounds and aldehydes may directly inhibit glycolysis. Homocysteinylation of GAPDH may stabilize aggregates of the enzyme by additional disulfide bonding. All types of post-translational modifications affect aggregation of GAPDH. A special attention is given to the role of chaperones in the amyloidogenic transformation of proteins and to confirmation of the hypothesis on blocking of the chaperones by misfolded protein forms. The denatured GAPDH forms were shown to interact directly with amyloidogenic proteins (alpha-synuclein and amyloid-beta peptide) and to play a crucial role in blocking of chaperone system.


Subject(s)
Amyloid/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Neurodegenerative Diseases/metabolism , Protein Aggregates , Animals , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Protein Denaturation , Protein Processing, Post-Translational
3.
Biopolymers ; 101(9): 975-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24912753

ABSTRACT

The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes.


Subject(s)
Cross-Linking Reagents/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Homocysteine/analogs & derivatives , L-Lactate Dehydrogenase/metabolism , Animals , Calorimetry, Differential Scanning , Catalysis , Electrophoresis, Polyacrylamide Gel , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry , Homocysteine/metabolism , Hydrodynamics , L-Lactate Dehydrogenase/chemistry , Lysine/metabolism , Microscopy, Electron, Transmission , Models, Molecular , NAD/metabolism , Rabbits
4.
Arch Biochem Biophys ; 526(1): 29-37, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22782079

ABSTRACT

Modification of protein lysyl residues by homocysteine (Hcy)-thiolactone generates proteins with altered structures and functions. It has been supposed to be one of the factors inducing protein condensation pathologies. To test a hypothesis that N-homocysteinylation may induce structural changes and in particular amyloidogenic conversion, ovine prion protein (PrP) was modified with Hcy-thiolactone and its physico-chemical properties were studied. N-Hcy-PrP formed insoluble multimers. Mass spectrometry analyses showed that at least K197 and K207 residues of PrP were the sites of N-homocysteinylation. Dynamic light scattering measurements revealed large aggregated N-Hcy-PrP particles of 1µm diameter. They were resistant to proteinase K digestion, and enhanced thioflavin T (ThT)-binding fluorescence, what is characteristic of amyloid structures. Infrared spectroscopy measurements showed increased content of beta-sheet in N-Hcy-PrP compared to unmodified PrP. Epifluorescence microscopy in the presence of ThT revealed cluster-like aggregates of N-Hcy-PrP. The collected data indicate that the N-homocysteinylation causes amyloidogenic transformation of PrP in vitro.


Subject(s)
Amyloid/chemistry , Homocysteine/metabolism , Homocysteine/pharmacology , Prions/chemistry , Prions/metabolism , Protein Multimerization/drug effects , Sheep , Amino Acid Sequence , Animals , Endopeptidase K/metabolism , Homocysteine/chemistry , Hydrolysis/drug effects , Lactones/chemistry , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary/drug effects
5.
Biochim Biophys Acta ; 1814(12): 1730-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21856455

ABSTRACT

Molecular chaperones have been shown to be involved in the processes taking place during the pathogenesis of various amyloid neurodegenerative diseases. However, contradictory literature reports suggest that different molecular chaperones can either stimulate or prevent the formation of amyloid structures from distinct amyloidogenic proteins. In the present work, we concentrated on the effects caused by two molecular chaperonins, ovine TRiC and bacterial GroEL, on the aggregation and conformational state of ovine PrP. Both chaperonins were shown to bind native PrP and to produce amyloid-like forms of ovine PrP enriched with beta-structures but, while GroEL acted in an ATP-dependent manner, TRiC was shown to cause the same effect only in the absence of Mg-ATP (i.e. in the inactive form). In the presence of chaperonin GroEL, ovine PrP was shown to form micellar particles, approximately 100-200nm in diameter, which were observed both by dynamic light scattering assay and by electron microscopy. The content of these particles was significantly higher in the presence of Mg-ATP and, only under these conditions, GroEL produced amyloid-like species enriched with beta-structures. TRiC was shown to induce the formation of amyloid fibrils observed by electron microscopy, but only in the absence of Mg-ATP. This study suggests the important role of the cytosolic chaperonin TRiC in the propagation of amyloid structures in vivo during the development of amyloid diseases and the possible role of the bacterial chaperonin GroEL, located in the intestinal microflora, in the induction of these diseases.


Subject(s)
Amyloid/chemistry , Chaperonin 60/physiology , Chaperonins/physiology , Ion Channels/physiology , Prions/chemistry , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/physiology , Chaperonin 60/metabolism , Chaperonins/metabolism , Chemical Precipitation , Eukaryotic Cells/metabolism , Ion Channels/metabolism , Light , Microscopy, Electron , Prions/metabolism , Protein Binding/physiology , Protein Folding , Scattering, Radiation , Sheep
6.
Biochim Biophys Acta ; 1814(10): 1234-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21689790

ABSTRACT

Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, ß- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one ß-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3µm. Homocysteinylation of α(S1)- and ß-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.


Subject(s)
Caseins/chemistry , Caseins/metabolism , Homocysteine/metabolism , Animals , Cattle , Circular Dichroism , Congo Red/chemistry , Congo Red/metabolism , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Protein Binding , Protein Conformation , Protein Multimerization/physiology , Protein Processing, Post-Translational , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...