Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670956

ABSTRACT

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

2.
J Phys Chem Lett ; 15(2): 565-574, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38198283

ABSTRACT

The distorted phases of monolayer 1T-MoS2 have distinct electronic properties, with potential applications in optoelectronics, catalysis, and batteries. We theoretically investigate the use of Ni-doping to generate distorted 1T phases and find not only the ones usually reported but also two further phases (3 × 3 and 4 × 4), depending on the concentration and the substitutional or adatom doping site. Corresponding pristine phases are stable after removal of dopants, which might offer a potential route to experimental synthesis. We find large ferroelectric polarizations, most notably in 3 × 3 which─compared to the recently measured 1T″─has 100 times greater ferroelectric polarization, a lower energy, and a larger band gap. Doped phases include exotic multiferroic semimetals, ferromagnetic polar metals, and improper ferroelectrics with only in-plane polarization switchable. The pristine phases have unusual multiple gaps in the conduction bands with possible applications for intermediate band solar cells, transparent conductors, and nonlinear optics.

3.
Nano Lett ; 23(24): 11395-11401, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38079217

ABSTRACT

Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., Bi2Te3) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual Bi2Te3 nanostructures tend to perform less efficiently than bulk Bi2Te3. We report a greater-than-order-of-magnitude enhancement in the thermoelectric properties of suspended Bi2Te3 nanoribbons, coated in situ to form a Bi2Te3/F4-TCNQ core-shell nanoribbon without oxidizing the core-shell interface. The shell serves as an oxidation barrier but also directly functions as a strong electron acceptor and p-type carrier donor, switching the majority carriers from a dominant n-type carrier concentration (∼1021 cm-3) to a dominant p-type carrier concentration (∼1020 cm-3). Compared to uncoated Bi2Te3 nanoribbons, our Bi2Te3/F4-TCNQ core-shell nanoribbon demonstrates an effective chemical potential dramatically shifted toward the valence band (by 300-640 meV), robustly increased Seebeck coefficient (∼6× at 250 K), and improved thermoelectric performance (10-20× at 250 K).

4.
Chem Commun (Camb) ; 59(25): 3711-3714, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36896804

ABSTRACT

Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C8H28N5Pb3Cl11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.

5.
Nanotechnology ; 34(1)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36130587

ABSTRACT

We present results of atomic-force-microscopy-based friction measurements on Re-doped molybdenum disulfide (MoS2). In stark contrast to the widespread observation of decreasing friction with increasing number of layers on two-dimensional (2D) materials, friction on Re-doped MoS2exhibits an anomalous, i.e. inverse, dependence on the number of layers. Raman spectroscopy measurements combined withab initiocalculations reveal signatures of Re intercalation. Calculations suggest an increase in out-of-plane stiffness that inversely correlates with the number of layers as the physical mechanism behind this remarkable observation, revealing a distinctive regime of puckering for 2D materials.

6.
J Chem Phys ; 153(2): 024117, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668924

ABSTRACT

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

7.
J Chem Phys ; 152(12): 124119, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32241132

ABSTRACT

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).

8.
J Phys Condens Matter ; 31(3): 034002, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30523877

ABSTRACT

Solar thermal fuels (STFs) are an unconventional paradigm for solar energy conversion and storage which is attracting renewed attention. In this concept, a material absorbs sunlight and stores the energy chemically via an induced structural change, which can later be reversed to release the energy as heat. An example is the azobenzene molecule which has a cis-trans photoisomerization with these properties, and can be tuned by chemical substitution and attachment to templates such as carbon nanotubes, small molecules, or polymers. By analogy to the Shockley-Queisser limit for photovoltaics, we analyze the maximum attainable efficiency for STFs from fundamental thermodynamic considerations. Microscopic reversibility provides a bound on the quantum yield of photoisomerization due to fluorescence, regardless of details of photochemistry. We emphasize the importance of analyzing the free energy, not just enthalpy, of the metastable molecules, and find an efficiency limit for conversion to stored chemical energy equal to the Shockley-Queisser limit. STF candidates from a recent high-throughput search are analyzed in light of the efficiency limit.

9.
J Phys Condens Matter ; 24(23): 233202, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22562950

ABSTRACT

Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.


Subject(s)
Computers , Quantum Theory , Software , Benzene/chemistry , Computer Graphics , Models, Molecular , Molecular Conformation , Time Factors
10.
J Chem Phys ; 133(3): 034111, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20649312

ABSTRACT

Calculations of the hyperpolarizability are typically much more difficult to converge with basis set size than the linear polarizability. In order to understand these convergence issues and hence obtain accurate ab initio values, we compare calculations of the static hyperpolarizability of the gas-phase chloroform molecule (CHCl(3)) using three different kinds of basis sets: Gaussian-type orbitals, numerical basis sets, and real-space grids. Although all of these methods can yield similar results, surprisingly large, diffuse basis sets are needed to achieve convergence to comparable values. These results are interpreted in terms of local polarizability and hyperpolarizability densities. We find that the hyperpolarizability is very sensitive to the molecular structure, and we also assess the significance of vibrational contributions and frequency dispersion.


Subject(s)
Chloroform/chemistry , Linear Models , Nonlinear Dynamics , Normal Distribution , Quantum Theory
11.
Phys Rev Lett ; 104(17): 178301, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20482149

ABSTRACT

Single-molecule-resolved scanning tunneling microscopy of tetra-tert-butyl azobenzene (TTB-AB) molecules adsorbed onto Au(111) reveals chirality selection rules in their photoswitching behavior. This observation is enabled by the fact that trans-TTB-AB molecules self-assemble into homochiral domains. Cis-TTB-AB molecules produced via photoisomerization are found in two distinct conformations with final state chirality determined by the initial trans isomer chirality. Based on these observations and ab initio calculations, we propose a new inversion-based dynamical photoswitching mechanism for azobenzene molecules at a surface.

12.
Phys Rev Lett ; 99(3): 038301, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17678335

ABSTRACT

We have observed reversible light-induced mechanical switching for individual organic molecules bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of individual azobenzene molecules on Au(111) before and after reversibly cycling their mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings. STM images show that increasing the number of TB legs "lifts" the azobenzene molecules from the substrate, thereby increasing molecular photomechanical activity by decreasing molecule-surface coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...