Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 22(4): 433-439, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28328322

ABSTRACT

Monoacylglycerol acyltransferase enzymes (MGAT1, MGAT2, and MGAT3) convert monoacylglycerol to diacylglycerol (DAG). MGAT1 and MGAT2 are both implicated in obesity-related metabolic diseases. Conventional MGAT enzyme assays use radioactive substrates, wherein the product of the MGAT-catalyzed reaction is usually resolved by time-consuming thin layer chromatography (TLC) analysis. Furthermore, microsomal membrane preparations typically contain endogenous diacylglycerol acyltransferase (DGAT) from the host cells, and these DGAT activities can further acylate DAG to form triglyceride (TG). Our mass spectrometry (liquid chromatography-tandem mass spectrometry, or LC/MS/MS) MGAT2 assay measures human recombinant MGAT2-catalyzed formation of didecanoyl-glycerol from 1-decanoyl-rac-glycerol and decanoyl-CoA, to produce predominantly 1,3-didecanoyl-glycerol. Unlike 1,2-DAG, 1,3-didecanoyl-glycerol is proved to be not susceptible to further acylation to TG. 1,3-Didecanoyl-glycerol product can be readily solubilized and directly subjected to high-throughput mass spectrometry (HTMS) without further extraction in a 384-well format. We also have established the LC/MS/MS MGAT activity assay in the intestinal microsomes from various species. Our assay is proved to be highly sensitive, and thus it allows measurement of endogenous MGAT activity in cell lysates and tissue preparations. The implementation of the HTMS MGAT activity assay has facilitated the robust screening and evaluation of MGAT inhibitors for the treatment of metabolic diseases.


Subject(s)
Diglycerides/analysis , Enzyme Inhibitors/analysis , High-Throughput Screening Assays , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Acyl Coenzyme A/metabolism , Animals , Chlorocebus aethiops , Chromatography, Liquid/methods , Diglycerides/antagonists & inhibitors , Diglycerides/biosynthesis , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Haplorhini , Humans , Intestines/drug effects , Intestines/enzymology , Kinetics , Mice , Microsomes/drug effects , Microsomes/enzymology , N-Acetylglucosaminyltransferases/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Tandem Mass Spectrometry/methods
2.
J Lipid Res ; 53(6): 1106-16, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22493088

ABSTRACT

Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triglyceride (TG) synthesis. There are two isoforms, DGAT1 and DGAT2, with distinct protein sequences and potentially different physiological functions. To date, the ability to determine clear functional differences between DGAT1 and DGAT2, especially with respect to hepatic TG synthesis, has been elusive. To dissect the roles of these two key enzymes, we pretreated HepG2 hepatoma cells with (13)C(3)-D(5)-glycerol or (13)C(18)-oleic acid, and profiled the major isotope-labeled TG species by liquid chromatography tandem mass spectrometry. Selective DGAT1 and DGAT2 inhibitors demonstrated that (13)C(3)-D(5)-glycerol-incorporated TG synthesis was mediated by DGAT2, not DGAT1. Conversely, (13)C(18)-oleoyl-incorporated TG synthesis was predominantly mediated by DGAT1. To trace hepatic TG synthesis and VLDL triglyceride (VLDL-TG) secretion in vivo, we administered D(5)-glycerol to mice and measured plasma levels of D(5)-glycerol-incorporated TG. Treatment with an antisense oligonucleotide (ASO) to DGAT2 led to a significant reduction in D(5)-glycerol incorporation into VLDL-TG. In contrast, the DGAT2 ASO had no effect on the incorporation of exogenously administered (13)C(18)-oleic acid into VLDL-TG. Thus, our results indicate that DGAT1 and DGAT2 mediate distinct hepatic functions: DGAT2 is primarily responsible for incorporating endogenously synthesized FAs into TG, whereas DGAT1 plays a greater role in esterifying exogenous FAs to glycerol.


Subject(s)
Diacylglycerol O-Acyltransferase/metabolism , Enzyme Assays/methods , Glycerol/metabolism , Liver/enzymology , Oleic Acid/metabolism , Animals , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Enzyme Inhibitors/pharmacology , Esterification/drug effects , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Hep G2 Cells , Humans , Isotope Labeling , Lipoproteins, VLDL/metabolism , Male , Mice , Oligonucleotides, Antisense/genetics , Triglycerides/biosynthesis
3.
J Med Chem ; 53(22): 7979-91, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21033679

ABSTRACT

A fragment-based drug design paradigm has been successfully applied in the discovery of lead series of ketohexokinase inhibitors. The paradigm consists of three iterations of design, synthesis, and X-ray crystallographic screening to progress low molecular weight fragments to leadlike compounds. Applying electron density of fragments within the protein binding site as defined by X-ray crystallography, one can generate target specific leads without the use of affinity data. Our approach contrasts with most fragment-based drug design methodology where solution activity is a main design guide. Herein we describe the discovery of submicromolar ketohexokinase inhibitors with promising druglike properties.


Subject(s)
Fructokinases/antagonists & inhibitors , Indazoles/chemical synthesis , Models, Molecular , Piperidines/chemical synthesis , Animals , Caco-2 Cells , Cell Membrane Permeability , Crystallography, X-Ray , Electrons , Humans , In Vitro Techniques , Indazoles/chemistry , Indazoles/pharmacokinetics , Male , Microsomes, Liver/metabolism , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 18(16): 4615-9, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18653333

ABSTRACT

Members of a novel class of 4-amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones were identified as potent dual ErbB-2/EGFR kinase inhibitors using concept-guided design approach. These compounds inhibited the growth of ErbB-2 over-expressing human tumor cell lines (BT474, N87, and SK-BR-3) in vitro. Compound 15 emerged as a key lead and showed significant ability to inhibit growth factor-induced receptor phosphorylation in SK-BR-3 cells (IC(50)=54 nM) and cellular proliferation in vitro (IC(50)=14, 58, and 58 nM for BT474, N87, and SK-BR-3 respectively). The X-ray co-crystal structure of EGFR with a close analog (17) was determined and validated our design rationale.


Subject(s)
Chemistry, Pharmaceutical/methods , ErbB Receptors/antagonists & inhibitors , Hydrazones/chemistry , Hydrazones/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemical synthesis , Receptor, ErbB-2/antagonists & inhibitors , Animals , Drug Design , Humans , Hydrazones/pharmacology , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Oximes/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 18(12): 3495-9, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18508264

ABSTRACT

We herein disclose a novel series of 4-aminopyrimidine-5-carbaldehyde oximes that are potent and selective inhibitors of both EGFR and ErbB-2 tyrosine kinases, with IC(50) values in the nanomolar range. Structure-activity relationship (SAR) studies elucidated a critical role for the 4-amino and C-6 arylamino moieties. The X-ray co-crystal structure of EGFR with 37 was determined and validated our design rationale.


Subject(s)
Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Oximes/pharmacology , Pyrimidines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship
6.
J Biomol Screen ; 12(3): 418-28, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17438070

ABSTRACT

The reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP). ThermoFluor, a miniaturized 384-well thermal stability assay, has been implemented as a means of monitoring solution-dependent changes in protein stability, complementing the protein engineering and purification processes. A systematic analysis of pH, buffer or salt identity and concentration, biological metals, surfactants, and common excipients in terms of an effect on protein stability rapidly identifies conditions that might be used (or avoided) during protein production. Two PSPs are presented for the kinase catalytic domains of Akt-3 and cFMS, in which information derived from a ThermoFluor PSP led to an altered purification strategy, improving the yield and quality of the protein using the primary sequences of the catalytic domains.


Subject(s)
Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/chemistry , Receptor, Macrophage Colony-Stimulating Factor/biosynthesis , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Buffers , Fluorescence , Hydrogen-Ion Concentration , Metals/pharmacology , Osmolar Concentration , Protein Structure, Quaternary/drug effects , Proto-Oncogene Proteins c-akt/isolation & purification , Receptor, Macrophage Colony-Stimulating Factor/isolation & purification , Recombinant Proteins/isolation & purification , Recombinant Proteins/standards , Salts/pharmacology , Solutions/pharmacology , Thermodynamics
7.
J Biol Chem ; 282(6): 4094-101, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132624

ABSTRACT

The cFMS proto-oncogene encodes for the colony-stimulating factor-1 receptor, a receptor-tyrosine kinase responsible for the differentiation and maturation of certain macrophages. Upon binding its ligand colony-stimulating factor-1 cFMS autophosphorylates, dimerizes, and induces phosphorylation of downstream targets. We report the novel crystal structure of unphosphorylated cFMS in complex with two members of different classes of drug-like protein kinase inhibitors. cFMS exhibits a typical bi-lobal kinase fold, and its activation loop and DFG motif are found to be in the canonical inactive conformation. Both ATP competitive inhibitors are bound in the active site and demonstrate a binding mode similar to that of STI-571 bound to cABL. The DFG motif is prevented from switching into the catalytically competent conformation through interactions with the inhibitors. Activation of cFMS is also inhibited by the juxtamembrane domain, which interacts with residues of the active site and prevents formation of the activated kinase. Together the structures of cFMS provide further insight into the autoinhibition of receptor-tyrosine kinases via their respective juxtamembrane domains; additionally the binding mode of two novel classes of kinase inhibitors will guide the design of novel molecules targeting macrophage-related diseases.


Subject(s)
Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/chemistry , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Amides/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/antagonists & inhibitors , Mutant Chimeric Proteins/chemistry , Protein Structure, Tertiary/genetics , Proto-Oncogene Mas , Quinolones/chemistry , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/genetics , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/genetics
8.
J Biol Chem ; 282(6): 4085-93, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132625

ABSTRACT

A parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases. Characterization of the newly generated FMS constructs by enzymology and thermoshift assays demonstrated similar activities and compound binding to the FMS full-length cytoplasmic domain. Two chimeras were evaluated for crystallization in the presence and absence of a variety of ligands resulting in crystal structures, and leading to a successful structure-based drug design project for this important inflammation target.


Subject(s)
Protein Engineering , Receptor Protein-Tyrosine Kinases/chemical synthesis , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Crystallization , Cytoplasm/chemistry , Cytoplasm/genetics , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/chemical synthesis , Mutant Chimeric Proteins/genetics , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Sequence Alignment , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...