Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38470771

ABSTRACT

Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties.

2.
Adv Healthc Mater ; 12(13): e2202508, 2023 05.
Article in English | MEDLINE | ID: mdl-36691300

ABSTRACT

Control of protein adsorption is essential for successful integration of healthcare materials into the body. Human plasma fibrinogen (HPF), especially its conformation is a key upstream regulator for platelet behavior and thus pathological clot formation at the blood-biomaterial interface. A previous study by the authors revealed that the conformation of adsorbed HPF can be controlled by rutile surface crystallographic orientation. Therefore, it is hypothesized that pre-adsorbed HPF on specific rutile orientation can regulate platelets adhesion and activation. Here, it is shown that platelets exposed to the four low index (110), (100), (101), (001) facets of TiO2 (rutile) exhibit surface-specific behavior. Scanning electron microscopy (SEM) observations of platelets morphology and P-selectin expression measurement revealed that on (110) facets, platelets adhesion and activation are suppressed. In contrast, extensive surface coverage by fully activated platelets is observed on (001) facets. Platelets' behavior has been linked to the HPF conformation and thereby availability of platelet-binding sequences. Atomic force microscopy (AFM) imaging supported by immunochemical analysis shows that on (110) facets, HPF is adsorbed in trinodular conformation rendering the γ400-411 platelet-binding sequence inaccessible. This research has potential implications on the bioactivity of different materials crystal facets, reducing the risk of pathological clot formation and thromboembolic complications.


Subject(s)
Fibrinogen , Hemostatics , Humans , Fibrinogen/chemistry , Platelet Adhesiveness , Titanium/pharmacology , Titanium/chemistry , Blood Platelets/metabolism , Hemostatics/pharmacology , Adsorption , Surface Properties , Platelet Activation
3.
Colloids Surf B Biointerfaces ; 215: 112506, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35487071

ABSTRACT

Previous studies implied that single crystalline rutile surfaces have the ability to guide the functionality of adsorbed blood plasma proteins. However, a clear relation between the rutile crystallographic orientation and conformation of adsorbed proteins is still missing. Here, we examine the adsorption characteristics of human plasma fibrinogen (HPF) on atomically flat single rutile crystals with (110), (100), (101) and (001) facets. By direct visualization of individual protein molecules through atomic force microscopy (AFM) imaging, the distinct conformations of HPF were determined depending on rutile surface crystallographic orientation. In particular, dominant trinodular and globular conformation was found on (110) and (001) facets, respectively. The observed variations of HPF conformation were reasoned from the surface water contact angle and surface energy point of view. By analyzing AFM-based force measurements, statistically significant changes in surface energies of rutile surfaces covered with HPF were determined and linked to HPF conformation. Furthermore, the facet-dependent structural rearrangement of HPF was indirectly confirmed through deconvolution of high-resolution X-ray photoelectron spectroscopy (XPS) carbon and nitrogen spectra. The globular, and thus native-like HPF conformation observed on (001) facet, was reflected in the lowest level of amino group formation. We propose that the mechanism behind the crystallographic orientation-induced HPF conformation is driven by the facet-specific surface hydrophilicity and energy. From the biomedical material perspective, our results demonstrate that the conformation of HPF can be guided by controlling the crystallographic orientation of the underlying material surface. This might be beneficial to the field of titanium-based biomaterials design and development.


Subject(s)
Hemostatics , Titanium , Adsorption , Biocompatible Materials , Fibrinogen/chemistry , Humans , Microscopy, Atomic Force , Surface Properties , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...