Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 19(8): 1043-53, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11711228

ABSTRACT

In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/- 0.19 and 1.20 +/- 0.36. For recovered tissue the mean values were 0.99 +/- 0.25 and 1.87 +/- 0.71, respectively. There was a significant difference between these two regions for both measures (p < 0.003 and p < 0.001, respectively). Mean absolute measures of CBF (ml/100g/min) and CBV (ml/100g) for the total infarcted territory were 33.9 +/- 9.7 and 4.2 +/- 1.9. For recovered MTT tissue, the mean values were 41.5 +/- 7.2 and 5.3 +/- 1.2, respectively. A significant difference was also found for these regions (p < 0.009 and p < 0.036, respectively). The mean measures of sensitivity, specificity, positive and negative predictive values for modeling infarct evolution for the validation patient data were 0.72 +/- 0.05, 0.97 +/- 0.02, 0.68 +/- 0.07 and 0.97 +/- 0.02. We propose that this automated strategy may allow possible guided therapeutic intervention to stroke patients and evaluation of efficacy of novel stroke compounds in clinical drug trials.


Subject(s)
Magnetic Resonance Imaging/methods , Stroke/physiopathology , Aged , Algorithms , Blood Flow Velocity , Blood Volume , Brain/blood supply , Brain/physiopathology , Cerebrovascular Circulation , Disease Progression , Female , Humans , Male , Models, Biological , Predictive Value of Tests , Stroke/diagnosis
2.
J Neurol Neurosurg Psychiatry ; 69(4): 528-30, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10990518

ABSTRACT

A novel MRI method--diffusion tensor imaging--was used to compare the integrity of several white matter fibre tracts in patients with probable Alzheimer's disease. Relative to normal controls, patients with probable Alzheimer's disease showed a highly significant reduction in the integrity of the association white matter fibre tracts, such as the splenium of the corpus callosum, superior longitudinal fasciculus, and cingulum. By contrast, pyramidal tract integrity seemed unchanged. This novel finding is consistent with the clinical presentation of probable Alzheimer's disease, in which global cognitive decline is a more prominent feature than motor disturbance.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Analysis of Variance , Evaluation Studies as Topic , Humans , Middle Aged
3.
Magn Reson Imaging ; 17(3): 331-48, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10195576

ABSTRACT

We have performed MRI examinations to determine the water diffusion tensor in the brain of six patients who were admitted to the hospital within 12 h after the onset of cerebral ischemic symptoms. The examinations have been carried out immediately after admission, and thereafter at varying intervals up to 90 days post admission. Maps of the trace of the diffusion tensor, the fractional anisotropy and the lattice index, as well as maps of cerebral blood perfusion parameters, were generated to quantitatively assess the character of the water diffusion tensor in the infarcted area. In patients with significant perfusion deficits and substantial lesion volume changes, four of six cases, our measurements show a monotonic and significant decrease in the diffusion anisotropy within the ischemic lesion as a function of time. We propose that retrospective analysis of this quantity, in combination with brain tissue segmentation and cerebral perfusion maps, may be used in future studies to assess the severity of the ischemic event.


Subject(s)
Body Water/metabolism , Brain Ischemia/diagnosis , Brain/pathology , Magnetic Resonance Imaging/instrumentation , Anisotropy , Blood-Brain Barrier/physiology , Brain/blood supply , Brain Mapping/instrumentation , Cerebral Infarction/diagnosis , Diffusion , Humans , Image Processing, Computer-Assisted/instrumentation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...