Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hum Ecol Interdiscip J ; 44: 1-15, 2016.
Article in English | MEDLINE | ID: mdl-26924875

ABSTRACT

Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, preferences, rankings, and soil uses were recorded through interviews and field observations. These communities recognized nine soils varying in suitability for agriculture. They identified anthropogenic soils as most suitable for agriculture, but only one group used them predominantly for their swiddens. As these communities did not perceive soil nutrient status as limiting, they did not base crop-site selection on soil fertility or on the interplay between soil quality and performance of manioc genetic resources.

2.
J Anim Physiol Anim Nutr (Berl) ; 99(2): 251-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25195978

ABSTRACT

The effects of ensiling temperature and duration of ensiling on the feeding quality of whole-crop maize (Zea mays L.) silages were investigated. Samples of one cultivar of maize plants were collected from two different fields, grown in different years on sandy soils. Samples were collected when the whole-plant dry matter content was approximately 330 g/kg. Maize plants were chopped and ensiled in mini silos at three different ambient temperatures (5, 12 and 18 °C). The ensiling temperature affected the ensiling fermentation processes, causing different rates of pH decline and different final pH values. Samples from the silos were taken after 0 (not ensiled, i.e. control), 4, 8 and 16 weeks of ensiling. The silage samples were not dried, but ground-frozen under liquid nitrogen to pass a 1-mm sieve. The gas production technique was used to evaluate the influence of the ensiling temperature and the duration of ensiling on the degradation of the silage samples in rumen fluid. The gas production was highest when the maize was ensiled at 12 °C (p < 0.0001). An increase in ensiling duration caused a decrease in silage pH, accompanied by a decrease in gas production (p < 0.0001). The decrease in gas production was linearly related to the decrease in pH at the three temperatures. The present study shows that both ensiling temperature and ensiling duration play a significant role in the rumen degradability of maize silage.


Subject(s)
Rumen/physiology , Silage/analysis , Temperature , Zea mays , Animals , Food Analysis , Food Handling , Hydrogen-Ion Concentration , Time Factors
3.
J Exp Bot ; 65(1): 11-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24227339

ABSTRACT

Mapping studies using populations with introgressed marker-defined genomic regions are continuously increasing knowledge about quantitative trait loci (QTL) that correlate with variation in important crop traits. This knowledge is useful for plant breeding, although combining desired traits in one genotype might be complicated by the mode of inheritance and co-localization of QTL with antagonistic effects, and by physiological trade-offs, and feed-back or feed-forward mechanisms. Therefore, integrating advances at the genetic level with insight into influences of environment and crop management on crop performance remains difficult. Whereas mapping studies can pinpoint correlations between QTL and phenotypic traits for specific conditions, ignoring or overlooking the importance of environment or crop management can jeopardize the relevance of such assessments. Here, we focus on fruit load (a measure determining competition among fruits on one plant) and its strong modulation of QTL effects on fruit size and composition. Following an integral approach, we show which fruit traits are affected by fruit load, to which underlying processes these traits can be linked, and which processes at lower and higher integration levels are affected by fruit load (and subsequently influence fruit traits). This opinion paper (i) argues that a mechanistic framework to interpret interactions between fruit load and QTL effects is needed, (ii) pleads for consideration of the context of agronomic management when detecting QTL, (iii) makes a case for incorporating interacting factors in the experimental set-up of QTL mapping studies, and (iv) provides recommendations to improve efficiency in QTL detection and use, with particular focus on model-based marker-assisted breeding.


Subject(s)
Crops, Agricultural/genetics , Fruit/physiology , Gene Expression Regulation, Plant , Gene-Environment Interaction , Quantitative Trait Loci/genetics , Breeding , Chromosome Mapping , Crops, Agricultural/physiology , Fruit/genetics , Genotype , Models, Genetic , Phenotype
4.
Front Plant Sci ; 4: 379, 2013.
Article in English | MEDLINE | ID: mdl-24098301

ABSTRACT

BACKGROUND AND AIMS: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grown lettuce; exploring genetic variation in such traits might contribute to strategies to select for robust cultivars, i.e., cultivars that perform well in the field, even under stress. METHODS: To investigate the impact of below-ground (root development and resource capture) on above-ground (shoot weight, leaf area) traits, different combinations of shoot and root growth were created using transplants of different sizes in three field experiments. Genetic variation in morphological and physiological below- and above-ground responses to different types of transplant shocks was assessed using four cultivars. RESULTS: Transplanting over-developed seedlings did not affect final yield of any of the four cultivars. Small transplant size persistently impacted growth and delayed maturity. The cultivars with overall larger root weights and rooting depth, "Matilda" and "Pronto," displayed a slightly higher growth rate in the linear phase leading to better yields than "Mariska" which had a smaller root system and a slower linear growth despite a higher maximal exponential growth rate. "Nadine," which had the highest physiological nitrogen-use efficiency (g dry matter produced per g N accumulated in the head) among the four cultivars used in these trials, gave most stable yields over seasons and trial locations. CONCLUSIONS: Robustness was conferred by a large root system exploring deep soil layers. Additional root proliferation generally correlates with improved nitrate capture in a soil layer and cultivars with a larger root system may therefore perform better in harsh environmental conditions; increased nitrogen use efficiency can also confer robustness at low cost for the plant, and secure stable yields under a wide range of growing conditions.

5.
J Exp Bot ; 63(2): 895-911, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22021569

ABSTRACT

Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.


Subject(s)
Cell Respiration/physiology , Cynara/physiology , Helianthus/physiology , Hibiscus/physiology , Models, Biological , Photosynthesis/physiology , Acclimatization , Biomass , Carbon Dioxide/metabolism , Cynara/radiation effects , Electron Transport , Helianthus/radiation effects , Hibiscus/radiation effects , Light , Nitrogen/metabolism , Photosynthesis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Ribulose-Bisphosphate Carboxylase/metabolism , Seasons , Temperature
6.
J Exp Bot ; 61(8): 2203-16, 2010 May.
Article in English | MEDLINE | ID: mdl-20231326

ABSTRACT

Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.


Subject(s)
Carbon Dioxide/metabolism , Nitrogen/metabolism , Photosynthesis , Triticum/chemistry , Triticum/growth & development , Biomass , Computer Simulation , Light , Models, Theoretical , Photosynthesis/radiation effects , Plant Components, Aerial/chemistry , Plant Components, Aerial/growth & development , Plant Components, Aerial/radiation effects , Triticum/metabolism , Triticum/radiation effects
7.
Theor Appl Genet ; 106(2): 317-25, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12582858

ABSTRACT

We investigated the association between late blight resistance and foliage maturity type in potato by means of molecular markers. Two QTLs were detected for foliage resistance against Phytophthora infestans (on chromosomes 3 and 5) and one for foliage maturity type (on chromosome 5). The QTL for resistance to late blight and the QTL for foliage maturity type on chromosome 5 appeared to be mapped on indistinguishable positions. We were interested whether this genetic linkage was due to closely linked but different genes, or due to one (or more) gene(s) with pleiotropic effects. We therefore developed an approach to detect QTLs, in which resistance to late blight was adjusted for foliage maturity type. This analysis revealed the same two QTLs for resistance against P. infestans, but the effect of the locus on chromosome 5 was reduced to only half the original effect. This is a strong indication that the two indistinguishable QTLs for foliage maturity type and for late blight resistance on chromosome 5 may actually be one gene with a pleiotropic effect on both traits. However, there was still a significant effect on resistance against P. infestans on the locus on chromosome 5 after adjusting for foliage maturity type. Therefore we cannot rule out the presence of two closely linked QTLs on chromosome 5: one with a pleiotropic effect on both late blight resistance and foliage maturity type, and another with merely an effect on resistance. In addition, the two QTLs for resistance to late blight showed an important epistatic interaction, suggesting that QTLs for resistance affect each other's expression.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant , Phytophthora/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Solanum tuberosum/genetics , Alleles , Epistasis, Genetic , Gene Frequency , Genetic Linkage , Genetic Markers , Genotype , Phenotype , Plant Leaves/physiology
8.
Phytopathology ; 93(6): 666-74, 2003 Jun.
Article in English | MEDLINE | ID: mdl-18943052

ABSTRACT

ABSTRACT The effects of plant age, leaf age, and leaf position on race-nonspecific resistance against Phytophthora infestans were investigated in a series of field and controlled environment experiments with five different potato (Solanum tuberosum) cultivars. Leaf position proved to be the most significant factor; apical leaves were far more resistant to late blight than basal leaves. Plant age and leaf age had only minor effects; therefore, the resistance of a specific leaf remained about the same during its entire lifetime. The gradual increase in late blight resistance from basal leaves to apical leaves appeared to be a general effect, irrespective of cultivar, growing conditions, or resistance test. Therefore, it is important to consider leaf position in tests for late blight resistance, because contrasts in resistance may be ascribed erroneously to differences between genotypes or treatments, whereas they are actually caused by differences in leaf position.

9.
J Environ Manage ; 66(1): 9-17, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12395583

ABSTRACT

Sustainability embraces socio-economic and bio-ecological dimensions or attributes. This paper presents a conceptual framework for quantifying sustainability on the basis of efficiency theory commonly used in economics. The conceptual model is implemented using Data Envelopment Analysis (DEA). Sustainability is measured for a sample of Dutch sugar beet growers. The average technical efficiency was only 50%. A positive correlation was found between technical efficiency and sustainable efficiency. Differences in efficiency among farmers were persistent within and between years. We conclude that there is considerable scope for improving the sustainability of arable farming by better management.


Subject(s)
Agriculture/economics , Conservation of Natural Resources , Models, Economic , Beta vulgaris , Costs and Cost Analysis , Netherlands
10.
Plant Physiol ; 84(2): 214-7, 1987 Jun.
Article in English | MEDLINE | ID: mdl-16665419

ABSTRACT

Extracellular extracts from leaves were applied to moderately induced cuttings of potato. The more inductive cycles the plants from which the leaf extracts were obtained had experienced, the lower the percentages of tuberization in thcuttings and the lower the tuber yields on the central buds.

SELECTION OF CITATIONS
SEARCH DETAIL
...