Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 58(13): 3652-3658, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31044861

ABSTRACT

The paper describes a multistage method of forming ultrasmooth substrates based on bulk beryllium. Such substrates are suggested to be used for multilayer extreme ultraviolet mirrors of spacecraft missions on solar corona investigations in the spectral range 17.1-58.4 nm. The technique for chemical nickel plating of the sample surface is described. The process parameters that provide the formation of an amorphous film with a thickness of about 100 microns are presented. The results of mechanical polishing are shown. The effective roughness of 1.3 nm is obtained, which is twice lower than one achievable for a nickel-free beryllium surface. The applicability of the ion beam figuring technique is demonstrated: the initial surface roughness of a nickel film after etching with Ar ions (Eion=200-800 eV) to a depth of 250 nm does not deteriorate. The amorphous silicon film deposition followed by ion polishing made it possible to reduce the microroughness (atomic force microscope frame 2×2 µm) to σ2×2=0.15 nm from the initial σ2×2=0.46 nm. The reflectivity of multilayer mirrors deposited on these substrates turned out to be close to the values obtained on "witnesses" (supersmooth silicon substrates). Moreover, for the Mg/MoSi2 mirror optimized for the wavelength λ=58.4 nm the values of the reflection coefficients of structures on the beryllium substrate and on the silicon "witness" were identical (about 28%).

2.
Appl Opt ; 55(16): 4430-5, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27411199

ABSTRACT

A reflective modification of the Schmidt-Cassegrain system was built and tested. Ultraviolet (UV) and soft x-ray applications are discussed. The system consists of a planoid mirror with an aspheric profile and prime concave and secondary convex spherical mirrors. Spherical aberration in a wide field of view and astigmatism are compensated by the aspheric profile of the planoid. The main parameters of the scheme are as follows: an entrance aperture of 180 mm, a focal ratio F/3.2, an angular resolution better than 3'' (corresponding to a pixel size of a back-side illuminated CCD), a field of view of ±1.5° (2ω=3°) and a flat image field with a diameter of 30.4 mm. Due to the absence of chromatic aberrations and wide field of view, the scheme is of considerable interest for hyperspectral instruments. In particular, the operating range of the instruments can be expanded into vacuum UV and UV regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...