Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963154

ABSTRACT

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

2.
Quant Imaging Med Surg ; 13(11): 7467-7483, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37969627

ABSTRACT

Background: The field of orthopedics seeks effective, safer methods for evaluating articular cartilage regeneration. Despite various treatment innovations, non-invasive, contrast-free full quantitative assessments of hyaline articular cartilage's regenerative potential using compositional magnetic resonance (MR) sequences remain challenging. In this context, our aim was to investigate the effectiveness of different MR sequences for quantitative assessment of cartilage and to compare them with the current gold standard delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) measurements. Methods: We employed ex vivo imaging in a preclinical minipig model to assess knee cartilage regeneration. Standardized osteochondral defects were drilled in the proximal femur of the specimens (n=14), which were divided into four groups. Porcine collagen scaffolds seeded with autologous adipose-derived stromal cells (ASC), autologous bone marrow stromal cells (BMSC), and unseeded scaffolds (US) were implanted in femoral defects. Furthermore, there was a defect group which received no treatment. After 6 months, the specimens were examined using different compositional MR methods, including the gold standard dGEMRIC as well as T1, T2, T2*, and T1ρ techniques. The statistical evaluation involved comparing the defect region with the uninjured tibia and femur cartilage layers and all measurements were performed on a clinical 3T MR Scanner. Results: In the untreated defect group, we observed significant differences in the defect region, with dGEMRIC values significantly lower (404.86±64.2 ms, P=0.018) and T2 times significantly higher (44.24±2.75 ms, P<0.001). Contrastingly, in all three treatment groups (ASC, BMSC, US), there were no significant differences among the three regions in the dGEMRIC sequence, suggesting successful cartilage regeneration. However, T1, T2*, and T1ρ sequences failed to detect such differences, highlighting their lower sensitivity for cartilage regeneration. Conclusions: As expected, dGEMRIC is well suited for monitoring cartilage regeneration. Interestingly, T2 imaging also proved to be a reliable cartilage imaging technique and thus offers a contrast agent-free alternative to the former gold standard for subsequent in vivo studies investigating the cartilage regeneration potential of different treatment modalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...