Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Acta Vet Hung ; 72(2): 66-70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896488

ABSTRACT

Nowadays, the three strongly beta-haemolytic spirochaetes, Brachyspira hyodysenteriae, Brachyspira suanatina and Brachyspira hampsonii are thought to be causative agents of swine dysentery, an economically devastating disease of grow-finish pigs characterised by severe mucohaemorrhagic diarrhoea. B. hyodysenteriae has been reported in most leading swine-producing regions. B. suanatina and B. hampsonii have been successfully recovered from faecal samples collected in a few countries only. The present study was performed in March 2023 on faecal samples originating from nine Polish finisher farms with 6,000 to 18,000 animals in a location. Samples were obtained from 40 diarrhoeic finishers. Nucleic acid extracted from the samples was analysed using multiplex PCR for Brachyspira spp. From a total of nine sample populations examined in our study, the genetic material of B. hampsonii was identified in two. To the best of our knowledge, this is the first report on molecular detection of B. hampsonii on pig farms outside North America, Belgium and Germany. Our research highlights the need for increased focus directed on laboratory testing strategies, the lack of which may perplex swine practitioners and severely hinder a definite diagnosis.


Subject(s)
Brachyspira , Gram-Negative Bacterial Infections , Swine Diseases , Animals , Poland/epidemiology , Swine Diseases/microbiology , Swine Diseases/epidemiology , Swine , Brachyspira/isolation & purification , Brachyspira/genetics , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Feces/microbiology
2.
Vet Sci ; 11(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38250923

ABSTRACT

Locomotor and central nervous system disorders occur during pig rearing, but there is no systematic recording of the different causative agents in Germany. Joint and meningeal swabs, kidneys, lungs, and eight different lymph nodes per pig were cultured, and isolated pathogens were identified using polymerase chain reactions (PCRs). The cps and pathotype of Streptococcus suis (S. suis) isolates were determined using multiplex-PCR. S. suis was the most important pathogen in the infected joints (70.8%) and meningeal swabs (85.4%) and was most frequently detected in both sites in suckling and weaning piglets. To elucidate the possible portal of entry of S. suis, eight different lymph nodes from 201 pigs were examined in a prospective study. S. suis was detected in all examined lymph nodes (n = 1569), including the mesenteric lymph nodes (15.8%; n = 121/765), with cps 9 (37.2%; n = 147) and cps 2 (24.3%; n = 96) being the most dominating cps types. In piglets with a systemic S. suis infection, different lymph nodes are frequently infected with the invasive S. suis strain, which does not help clarify the portal of entry for S. suis.

3.
J Vet Res ; 67(3): 353-359, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37786846

ABSTRACT

Introduction: Prior to the 2000s, swine dysentery was considered to be caused only by Brachyspira hyodysenteriae with contributing commensal intestinal anaerobes. Nowadays, it is known that the disease is caused by three strongly beta-haemolytic species of the anaerobic spirochaetal genus Brachyspira, i.e. B. hyodysenteriae and newly emerged B. hampsonii and B. suanatina. Material and Methods: The present investigation was carried out in November 2022 on nine Polish high-performing finisher pig farms. At every location one fresh pooled faecal sample was collected from 40 randomly selected pigs of between 60 and 110 kg live weight. Nucleic acid extracted from each pooled faecal sample was analysed by an in-house multiplex PCR for Brachyspira spp., which is capable of confirming the Brachyspira genus and detecting and differentiating Brachyspira species. Results: From a total of nine samples examined, the genetic material of B. suanatina was detected in seven. Non-pathogenic/questionably pathogenic Brachyspira spp. were found in six samples. Conclusion: To the best of our knowledge, this is the first report on the identification of B. suanatina in pigs outside Scandinavia, Germany and the United Kingdom. Our research not only provides valuable epidemiological data on B. suanatina infection in Europe but also highlights both the importance of modern laboratory diagnostics and the need for thorough investigation across regions, including retrospective studies.

4.
Microorganisms ; 11(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512848

ABSTRACT

The stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome is most commonly associated with porcine parvovirus 1 (PPV1) infections. Little is known about the occurrence of coinfections with SMEDI-associated pathogens and the associations among these pathogens. In our study, we included 40 SMEDI-affected litters from 18 different farms. In total, 158 out of 358 available fetuses from diagnostic transmittals were selected by systematic random sampling and examined for PCV2, PCV3, PPV1, and Leptospira spp. by q-PCR. Results from diagnostic materials showed the following results: in eleven farms, PCV2 was present; in nine farms, PPV1 was present; in five farms, PCV3 was present; and in two farms, Leptospira spp. was present. The detection of Leptospira spp. was significantly associated with a PCV2 coinfection (OR: 26.3; p < 0.001). PCV3 positivity resulted in a reduced probability of detecting PCV2 in the corresponding fetus (OR: 0.078; p = 0.008). Fetal maceration was associated with Leptospira spp. detection (OR: 8.6; p = 0.003), whereas mummification (p = 0.047), reduced crown-rump length (p < 0.001), and bodyweight (p = 0.001) of fetuses were significantly associated with PPV1 and PCV2 coinfection and thus, presumably, a shorter time to death after infection, indicating an enhanced negative effect on the development of fetuses with PCV2 + PPV1 coinfection.

5.
Vet Sci ; 9(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36136680

ABSTRACT

The MAT test is of great importance in the diagnosis of leptospiral infections. Based on various differences, the serovar Grippotyphosa has been divided into two types, Moskva V and Duyster. Differences or similarities of the two type strains in the context of leptospiral diagnostics have not yet been elucidated in more detail; therefore both strains were analysed in MAT diagnostics for the detection of leptospiral infections in pigs, dogs and horses. Serum samples from 2996 pigs, 55 dogs and 35 horses, as well as vitreous and/or aqueous fluid samples from these and 13 additional horses were analysed by MAT; available supplementary samples were tested for leptospires by PCR. In pigs, 92.6% of the samples with both strains received an identical titre result in the MAT test, whereas in dogs and horses only 53.0% and 43.6% had concordant results. Since infections with the serovar Grippotyphosa occur more frequently in dogs and horses overall, more differences were observed here. In the case of discrepant serological results, supplementary samples and PCR examinations were not able to add information on the true status. Further analyses of follow-up studies or at least serum pairs from dogs and horses infected with the serovar Grippotyphosa are necessary.

6.
Front Immunol ; 13: 830871, 2022.
Article in English | MEDLINE | ID: mdl-35251020

ABSTRACT

Equine recurrent uveitis (ERU) is a common ocular disease of horses and described as a model for human autoimmune uveitis. This immune-mediated, inflammatory condition progressively destroys the eye, ultimately leading to blindness. Genetic and autoimmune factors, next to infections with Leptospira, are discussed as key factors in the pathogenesis. Furthermore, a release of neutrophil extracellular traps (NETs) by activated neutrophils is involved. NETs are composed of decondensed chromatin and proteins that can immobilize invading pathogens. However, if NETs accumulate, they can contribute to detrimental autoimmune processes. Thus, we aimed to investigate the impact of NETs in ERU patients. Therefore, we quantified several NET-markers (cell-free DNA, nucleosomes, citrullinated histone H3, histone-myeloperoxidase complexes, interleukin-17, equine cathelicidin 1 and DNase I activity) and NET-autoantibodies in sera and vitreous body fluids (VBF) of ERU-diseased horses and correlated the data with the disease status (signalment, ERU scores and Leptospira infection status). NET markers were detected to varying degrees in VBF of diseased horses, and partially correlated to disease severity and the presence of Leptospira spp. Cell-free DNA and nucleosomes as NET markers correlate with ERU severity in total and VBF scores, despite the presence of active DNases. Additionally, a significant correlation between fundus affection in the eye and NET autoantibodies was detectable. Therefore, we further investigated the influence of VBF samples from equine patients and isolated NETs on the blood-retina barrier in a cell culture model. VBF of diseased horses significantly induced cytotoxicity in retinal pigment epithelial cells. Moreover, partially digested NETs also resulted in cytotoxic effects. In the presence of lipopolysaccharide (LPS), the main component of the leptospiral surface, both undigested and completely digested NETs were cytotoxic. Correlations between the ERU-scores and Leptospira were also calculated. Detection of leptospiral DNA, and antibody titers of the serovar Grippotyphosa correlated with disease severity. In addition, a correlation between Leptospira and several NET markers was observed in VBF. Altogether, our findings suggest a positive correlation between NET markers with disease severity and involvement of Leptospira in the VBF of ERU-diseased horses, as well as a cytotoxic effect of NETs in eyes.


Subject(s)
Cell-Free Nucleic Acids , Extracellular Traps , Horse Diseases , Leptospira , Uveitis , Animals , Autoantibodies , Biomarkers , Chronic Disease , Histones , Horse Diseases/diagnosis , Horses , Nucleosomes , Uveitis/veterinary
7.
Transbound Emerg Dis ; 69(4): 2306-2319, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34347385

ABSTRACT

Porcine viruses have been emerging in recent decades, threatening animal and human health, as well as economic stability for pig farmers worldwide. Next-generation sequencing (NGS) can detect and characterize known and unknown viruses but has limited sensitivity when an unbiased approach, such as shotgun metagenomics sequencing, is used. To increase the sensitivity of NGS for the detection of viruses, we applied and evaluated a broad viral targeted sequence capture (TSC) panel and compared it to an unbiased shotgun metagenomic approach. A cohort of 36 pooled porcine nasal swab and blood serum samples collected from both sides of the Dutch-German border region were evaluated. Overall, we detected 46 different viral species using TSC, compared to 40 viral species with a shotgun metagenomics approach. Furthermore, we performed phylogenetic analysis on recovered influenza A virus (FLUAV) genomes from Germany and revealed a close similarity to a zoonotic influenza strain previously detected in the Netherlands. Although TSC introduced coverage bias within the detected viruses, it improved sensitivity, genome sequence depth and contig length. In-depth characterization of the swine virome, coupled with developing new enrichment techniques, can play a crucial role in the surveillance of circulating porcine viruses and emerging zoonotic pathogens.


Subject(s)
Metagenomics , Viruses , Animals , Genome, Viral , High-Throughput Nucleotide Sequencing/veterinary , Humans , Metagenome , Metagenomics/methods , Phylogeny , Swine , Viruses/genetics
8.
Transbound Emerg Dis ; 69(4): 2173-2181, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34212525

ABSTRACT

Livestock industry supports the livelihood of around 1.3 billion people in the world, with swine industry contributing with 30% of total livestock production worldwide. To maintain and guarantee this production, a pivotal point according to the OIE is addressing potential biohazards. To control them, permanent sero-surveillance is crucial to achieve more focused veterinary public health intervention and prevention strategies, to break the chains of transmission, and to enable fast responses against outbreaks. Within this context, multiplex assays are powerful tools with the potential to simplify surveillance programs, since they reduce time, labour, and variability within analysis. In the present work, we developed a multiplex bead-based assay for the detection of specific antibodies to six relevant pathogens affecting swine: ASFV, CSFV, PRRSV, SIV, TB and HEV. The most immunogenic target antigen of each pathogen was selected as the target protein to coat different microsphere regions in order to develop this multiplex assay. A total of 1544 serum samples from experimental infections as well as field samples were included in the analysis. The 6-plex assay exhibited credible diagnostic parameters with sensitivities ranging from 87.0% to 97.5% and specificities ranging from 87.9% to 100.0%, demonstrating it to be a potential high throughput tool for surveillance of infectious diseases in swine.


Subject(s)
African Swine Fever Virus , African Swine Fever , Porcine respiratory and reproductive syndrome virus , Swine Diseases , African Swine Fever/diagnosis , Animals , Humans , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
9.
Vet Res ; 52(1): 68, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980312

ABSTRACT

Glaesserella parasuis strains were characterized by serotyping PCR, vtaA virulence marker Leader Sequence (LS)-PCR, clinical significance, and geographic region. Overall, the serovars 4, 5/12, 7, 1, and 13 were the most commonly detected. Serovars of greatest clinical relevance were systemic isolates that had a higher probability of being serovar 5/12, 13, or 7. In comparison, pulmonary isolates had a higher likelihood of being serovars 2, 4, 7, or 14. Serovars 5/12 and 13 have previously been considered disease-associated, but this study agrees with other recent studies showing that serovar 7 is indeed associated with systemic G. parasuis disease. Serovar 4 strains illustrated how isolates can have varying degrees of virulence and be obtained from pulmonary, systemic, or nasal sites. Serovars 8, 9, 15, and 10 were predominantly obtained from nasal samples, which indicates a limited clinical significance of these serovars. Additionally, most internal G. parasuis isolates were classified as virulent by LS-PCR and were disease-associated isolates, including serovars 1, 2, 4, 5/12, 7, 13, and 14. Isolates from the nasal cavity, including serovars 6, 9, 10, 11, and 15, were classified as non-virulent by LS-PCR. In conclusion, the distribution of G. parasuis serovars remains constant, with few serovars representing most of the strains isolated from affected pigs. Moreover, it was confirmed that the LS-PCR can be used for G. parasuis virulence prediction of field strains worldwide.


Subject(s)
Haemophilus Infections/veterinary , Haemophilus parasuis/genetics , Swine Diseases/epidemiology , Animals , Asia/epidemiology , Europe/epidemiology , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , North America/epidemiology , Polymerase Chain Reaction/veterinary , Prevalence , Seroepidemiologic Studies , Serotyping/veterinary , Sus scrofa , Swine , Swine Diseases/microbiology
10.
Transbound Emerg Dis ; 68(6): 3120-3125, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33837672

ABSTRACT

Porcine respirovirus 1, also referred to as porcine parainfluenza virus 1 (PPIV-1), was first detected in deceased pigs from Hong Kong in 2013. It has since then been found in the USA, Chile and most recently in Hungary. Information on the pathogenicity and global spread is sparse. However, it has been speculated to play a role in the porcine respiratory disease complex. To investigate the porcine virome, we screened 53 pig samples from 26 farms within the Dutch-German border region using shotgun metagenomics sequencing (SMg). After detecting PPIV-1 in five farms through SMg, a real-time reverse transcriptase PCR (RT-qPCR) assay was designed, which not only confirmed the presence of the virus in 1 of the 5 farms but found an additional 6 positive farms. Phylogenetic analysis found the closest match to be the first detected PPIV-1 strain in Hong Kong. The Dutch-German region represents a significant area of pig farming within Europe and could provide important information on the characterization and circulation of porcine viruses, such as PPIV-1. With its recent detection in Hungary, these findings suggest widespread circulation of PPIV-1 in Central Europe, highlighting the need for further research on persistence, pathogenicity and transmission in Europe.


Subject(s)
Swine Diseases , Animals , Germany/epidemiology , Netherlands/epidemiology , Phylogeny , Respirovirus , Swine , Swine Diseases/epidemiology
12.
Viruses ; 12(12)2020 11 27.
Article in English | MEDLINE | ID: mdl-33260903

ABSTRACT

Shotgun metagenomic sequencing (SMg) enables the simultaneous detection and characterization of viruses in human, animal and environmental samples. However, lack of sensitivity still poses a challenge and may lead to poor detection and data acquisition for detailed analysis. To improve sensitivity, we assessed a broad scope targeted sequence capture (TSC) panel (ViroCap) in both human and animal samples. Moreover, we adjusted TSC for the Oxford Nanopore MinION and compared the performance to an SMg approach. TSC on the Illumina NextSeq served as the gold standard. Overall, TSC increased the viral read count significantly in challenging human samples, with the highest genome coverage achieved using the TSC on the MinION. TSC also improved the genome coverage and sequencing depth in clinically relevant viruses in the animal samples, such as influenza A virus. However, SMg was shown to be adequate for characterizing a highly diverse animal virome. TSC on the MinION was comparable to the NextSeq and can provide a valuable alternative, offering longer reads, portability and lower initial cost. Developing new viral enrichment approaches to detect and characterize significant human and animal viruses is essential for the One Health Initiative.


Subject(s)
Genome, Viral , Metagenomics , Nanopore Sequencing , Animals , Computational Biology/methods , Humans , Metagenomics/methods , Nanopore Sequencing/methods , Nucleic Acid Hybridization , Sequence Analysis, DNA , Virus Diseases/diagnosis , Virus Diseases/virology
13.
Vet Res ; 51(1): 137, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33203465

ABSTRACT

Glaesserella parasuis is an important pathogen in swine production. It acts as a primary pathogen in systemic Glässer´s disease and as a secondary pathogen in Porcine Respiratory Disease Complex. In this study, a collection of 308 isolates from carrier animals and individuals with respiratory or Glässer´s disease isolated 2012-2019 in Germany was analysed. Isolates were characterized for serovar implementing two different PCR methods. Additionally, two different PCR methods for pathotyping isolates were applied to the collection and results compared. Serovar 6 (p < 0.0001) and 9 (p = 0.0007) were correlated with carrier isolates and serovar 4 was associated with isolates from animals with respiratory disease (p = 0.015). In systemic isolates, serovar 13 was most frequently detected (18.9%). Various other serovars were isolated from all sites and the ratio of serovar 5 to serovar 12 was approximately 1:2. These two serovars together represented 14.3% of the isolates; only serovar 4 was isolated more frequently (24.7%). The pathotyping method based on the leader sequence (LS = ESPR of vta) was easy to perform and corresponded well to the clinical background information. Of the carrier isolates 72% were identified as non-virulent while 91% of the systemic isolates were classified as virulent (p < 0.0001). Results of the pathotyping PCR based on 10 different marker genes overall were in good agreement with clinical metadata as well as with results of the LS-PCR. However, the pathotyping PCR was more complicated to perform and analyze. In conclusion, a combination of the serotyping multiplex-PCR and the LS-PCR could improve identification of clinically relevant G. parasuis isolates, especially from respiratory samples.


Subject(s)
Haemophilus Infections/veterinary , Haemophilus parasuis/genetics , Haemophilus parasuis/pathogenicity , Polymerase Chain Reaction/veterinary , Swine Diseases/microbiology , Virulence/genetics , Animals , Germany , Haemophilus Infections/microbiology , Polymerase Chain Reaction/methods , Serogroup , Serotyping/veterinary , Sus scrofa , Swine
14.
Cells ; 8(12)2019 11 27.
Article in English | MEDLINE | ID: mdl-31783639

ABSTRACT

Equine recurrent uveitis (ERU) is considered one of the most important eye diseases in horses and typically appears with relapsing inflammatory episodes without systemic effects. Various disorders have been described as an initial trigger, including infections. Independent of the initiating cause, there are numerous indications that ERU is an immune-mediated disease. We investigated whether neutrophil extracellular traps (NETs) are part of the ERU pathogenesis. Therefore, vitreous body fluids (VBF), sera, and histological sections of the eye from ERU-diseased horses were analyzed for the presence of NET markers and compared with horses with healthy eyes. In addition, NET formation by blood derived neutrophils was investigated in the presence of VBF derived from horses with healthy eyes versus ERU-diseased horses using immunofluorescence microscopy. Interestingly, NET markers like free DNA, histone-complexes, and myeloperoxidase were detected in higher amounts in samples from ERU-diseased horses. Furthermore, in vitro NET formation was higher in neutrophils incubated with VBF from diseased horses compared with those animals with healthy eyes. Finally, we characterized the ability of equine cathelicidins to induce NETs, as potential NET inducing factors in ERU-diseased horses. In summary, our findings lead to the hypothesis that ERU-diseased horses develop more NETs and that these may contribute to the pathogenesis of ERU.


Subject(s)
Chronic Disease/veterinary , Extracellular Traps/immunology , Horses/immunology , Uveitis , Vitreous Body/immunology , Animals , Antimicrobial Cationic Peptides/immunology , Uveitis/immunology , Uveitis/veterinary , Vitreous Body/pathology , Cathelicidins
15.
BMC Vet Res ; 14(1): 211, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29954395

ABSTRACT

BACKGROUND: Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia. For control of the disease the detection of sub-clinically infected pigs is of major importance to avoid transmitting of subclinical infections. One method recommended is the testing of tonsillar samples for the presence of A. pleuropneumoniae. This is routinely done by PCR techniques. However, based upon PCR susceptibility testing and monitoring of resistance development is impossible. Therefore, in this study the informative values of bacteriological culture of tonsilar samples for the colonisation status of pigs were tested. In total, 163 German Landrace nursery pigs were experimentally exposed to A. pleuropneumoniae serotype 7 by aerosol and the rate of isolation from lung tissue and tonsils and the corresponding degree of lung lesions were investigated. RESULTS: Overall a significant correlation (p < 0.001) between degree of clinical disease, degree of lung alterations and degree of A. pleuropneumoniae isolation from tonsillar and lung tissue after exposure was detected. Of these animals tested, 74.8% were tested positive in tonsillar and lung samples, 7.4% remained completely negative and in 4.3% the tonsils were tested positive despite negative isolation results from lung tissue. In 13.5% of the pigs A. pleuropneumoniae could be isolated in lung tissue but not in tonsillar samples. In 36.4% of these animals a heavy colonization of the lungs and in 40.9% moderate to severe lung alterations were proven. Hence, the diagnostic sensitivity for the detection of a positive colonization status of the pigs by bacterial culture examination of tonsillar samples was 84.7%, the diagnostic specificity was 66.7% and the predictive values were 94.6% (positive) and 35.3% (negative). The overall sensitivity for A. pleuropneumoniae exposure was 78.2% (tonsils) and 88.0% (lung tissue). CONCLUSIONS: In conclusion, tonsil examination alone for the detection of a positive colonization status of pigs performed might lead to false negative results as lungs might be heavily colonized despite negative tonsillar isolation results. Therefore culture of tonsillar samples should not be the sole test for the confirmation of a pigs' status but used in combination with methods also evaluating the colonization status of the lower respiratory tract.


Subject(s)
Actinobacillus Infections/veterinary , Actinobacillus pleuropneumoniae , Lung/microbiology , Palatine Tonsil/microbiology , Swine Diseases/microbiology , Actinobacillus Infections/diagnosis , Actinobacillus Infections/microbiology , Actinobacillus Infections/pathology , Aerosols , Animals , Animals, Newborn/microbiology , Lung/pathology , Male , Palatine Tonsil/pathology , Swine , Swine Diseases/diagnosis , Swine Diseases/pathology
16.
Porcine Health Manag ; 4: 10, 2018.
Article in English | MEDLINE | ID: mdl-29610674

ABSTRACT

BACKGROUND: As no current data are available on the prevalence of leptospiral infection in swine in Germany, we analysed laboratory data from diagnostic examinations carried out on samples from swine all over Germany from January 2011 to September 2016. A total of 29,829 swine sera were tested by microscopic agglutination test (MAT) for antibodies against strains of eleven Leptospira serovars. RESULTS: Overall, 20.2% (6025) of the total sample collection tested positive for leptospiral infection. Seropositivity ranged between 16.3% (964) in 2011 and 30.9% (941) in 2016 (January to September only). Of all samples, 11.6% (57.3% of the positives) reacted with only one Leptospira serovar, and only 8.6% (42.7% of the positives) reacted simultaneously with two or more serovars. The most frequently detected serovar was Bratislava, which was found in 11.6% (3448) of all samples, followed by the serovars Australis in 7.3% (2185), Icterohaemorrhagiae in 4.0% (1191), Copenhageni in 4.0% (1182), Autumnalis in 3.7% (1054), Canicola in 2.0% (585), and Pomona in 1.2% (368). Modelling shows that both the year and the reason for testing at the laboratory had statistically strong effects on the test results; however, no interactions were determined between those factors. The results support the suggestion that the seropositivities found may be considered to indicate the state of leptospiral infections in the German swine population. CONCLUSION: Although data from passive surveillance are prone to selection bias, stratified analysis by initial reason for examination and analyses by model approaches may correct for biases. A prevalence of about 20% for a leptospiral infection is most probable for sows with reproductive problems in Germany, with an increasing trend. Swine in Germany are probably a reservoir host for serovar Bratislava, but in contrast to other studies not for Pomona and Tarassovi.

17.
Article in English | MEDLINE | ID: mdl-29632701

ABSTRACT

BACKGROUND: Neonatal diarrhoea represents a major disease problem in the early stages of animal production, increasing significantly pre-weaning mortality and piglets weaned below the target weight. Enteric diseases in newborn piglets are often of endemic presentation, but may also occur as outbreaks with high morbidity and mortality. The objective of this study was to assess the frequency of different pathogens involved in cases of recurrent neonatal diarrhoea in Spain. RESULTS: A total of 327 litters from 109 sow farms located in Spain with neonatal recurrent diarrhoea were sampled to establish a differential diagnosis against the main enteric pathogens in piglets. In total, 105 out of 109 (96.3%) case submissions were positive to one of the examined enteric organisms considered potentially pathogenic (Escherichia coli, Clostridium perfringens types A and C, Transmissible gastroenteritis virus [TGEV], Porcine epidemic diarrhoea virus [PEDV] or Rotavirus A [RVA]). Fifty-eight out of 109 (53.2%) submissions were positive for only one of these pathogens, 47 out of 109 (43.1%) were positive for more than one pathogen and, finally, 4 out of 109 (3.7%) were negative for all these agents. Escherichia coli strains were isolated from all submissions tested, but only 11 of them were classified into defined pathotypes. Clostridium perfringens type A was detected in 98 submissions (89.9%) and no C. perfringens type C was found. Regarding viruses, 47 (43.1%) submissions were positive for RVA, 4 (3.7%) for PEDV and none of them for TGEV. CONCLUSION: In conclusion, C. perfringens type A, E. coli and RVA were the main pathogens found in faeces of neonatal diarrheic piglets in Spain.

18.
Prev Vet Med ; 150: 93-100, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29406090

ABSTRACT

Porcine epidemic diarrhea (PED) has reemerged in Europe since 2014. Characterized by a rapid onset of diarrhea in pigs of all ages, morbidity can reach up to 100% whereas mortality is variable. The virus strains involved in the recent European outbreaks all cluster together with US strains (S INDEL) that lead to less severe clinical signs. In this study, fattening pigs and suckling piglets (n = 105) on farms with no prior PED history were monitored after an acute outbreak of the disease, caused by an S INDEL strain of PED virus (PEDV). For diagnostic investigations in the affected farms, real time RT-PCR was performed to detect PEDV RNA in individually taken fecal samples, and two commercial ELISA kits, both based on the N protein of PEDV, were used to detect IgG in serum samples of pigs experiencing acute signs of the disease. PEDV RNA could be detected in fecal samples up to 14 days after initial sampling. Comparing both ELISAs by Cohens Kappa showed substantial agreement (κ = 0,771). Antibodies were detectable in all fattening pigs (100%) within 10 days after the occurrence of first clinical signs and remained detectable for about two months at least in 20.6% (farm 1) and 45.7% (farm 2) of the animals, respectively. In contrast, only 18 of 34 (52.9%) suckling piglets seroconverted. Although, PEDV RNA was found in fecal samples of all piglets, 13 piglets did not demonstrate antibodies at any sampling day. PCR to detect PEDV RNA in fecal samples seems to be a reliable diagnostic tool during and after the acute outbreak. In the present study, IgG ELISA kits proved to be a feasible diagnostic tool, but age dependent differences in detection rate and persistence of antibodies need to be considered.


Subject(s)
Coronavirus Infections/veterinary , Disease Outbreaks/veterinary , Immunity, Humoral , Porcine epidemic diarrhea virus/physiology , Swine Diseases/epidemiology , Swine Diseases/immunology , Age Factors , Animals , Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Feces/virology , Female , Germany/epidemiology , Immunoglobulin G/blood , Polymerase Chain Reaction/veterinary , RNA, Viral/analysis , Swine , Viral Proteins/analysis
20.
J Clin Microbiol ; 55(1): 264-273, 2017 01.
Article in English | MEDLINE | ID: mdl-27847372

ABSTRACT

Currently, there is no agreed method available for broth microdilution susceptibility testing of Haemophilus parasuis, one of the most important bacterial pathogens in pig production. Therefore, the aim of this study was to develop a method that could be easily performed by diagnostic laboratories and that appears suitable for a harmonized susceptibility testing. Growth determinations using one type strain and three field isolates revealed no visible growth of H. parasuis in media which have proven to be suitable for susceptibility testing of fastidious organisms. Therefore, a new medium, cation-adjusted Mueller-Hinton broth (CAMHB) plus NADH and sterile filtered heat-inactivated chicken serum, was developed. The reproducibility of MICs obtained in this medium was evaluated and statistically analyzed, considering a model with two different variables (precondition of five identical MICs and MIC mode accepting a deviation of ±1 dilution step, respectively). No significant differences for both variables were seen between two time points investigated and between results obtained with the recently proposed test medium broth (TMB). Nearly all MICs of quality control strains were in the acceptable range. Subsequently, 47 H. parasuis isolates representing 13 serovars were tested with the newly developed medium and TMB. Statistical analysis of all isolates and 15 antimicrobial agents and antimicrobial combinations showed no significant difference between MICs obtained in supplemented CAMHB and TMB. Because of a simplified implementation in routine diagnostic and a lower chance of interference between medium components and antimicrobial agents, supplemented CAMHB is recommended with an incubation time of 24 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Haemophilus parasuis/drug effects , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/standards , Animals , Culture Media/chemistry , Reproducibility of Results , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...