Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 26(3): 503-513, 2024 03 04.
Article in English | MEDLINE | ID: mdl-37818983

ABSTRACT

BACKGROUND: The IDH-wildtype glioblastoma (GBM) patients have a devastating prognosis. Here, we analyzed the potential prognostic value of global DNA methylation of the tumors. METHODS: DNA methylation of 492 primary samples and 31 relapsed samples, each treated with combination therapy, and of 148 primary samples treated with radiation alone were compared with patient survival. We determined the mean methylation values and estimated the immune cell infiltration from the methylation data. Moreover, the mean global DNA methylation of 23 GBM cell lines was profiled and correlated to their cellular radiosensitivity as measured by colony formation assay. RESULTS: High mean DNA methylation levels correlated with improved survival, which was independent from known risk factors (MGMT promoter methylation, age, extent of resection; P = 0.009) and methylation subgroups. Notably, this correlation was also independent of immune cell infiltration, as higher number of immune cells indeed was associated with significantly better OS but lower mean methylation. Radiosensitive GBM cell lines had a significantly higher mean methylation than resistant lines (P = 0.007), and improved OS of patients treated with radiotherapy alone was also associated with higher DNA methylation (P = 0.002). Furthermore, specimens of relapsed GBM revealed a significantly lower mean DNA methylation compared to the matching primary tumor samples (P = 0.041). CONCLUSIONS: Our results indicate that mean global DNA methylation is independently associated with outcome in glioblastoma. The data also suggest that a higher DNA methylation is associated with better radiotherapy response and less aggressive phenotype, both of which presumably contribute to the observed correlation with OS.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Prognosis , DNA Methylation , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/radiotherapy , DNA Repair Enzymes/genetics
2.
Nat Commun ; 14(1): 7717, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001143

ABSTRACT

Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.


Subject(s)
Glioma , Neuroblastoma , Humans , Child , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Disease Models, Animal , Glioma/genetics , Mutation , Gene Amplification
3.
Clin Transl Radiat Oncol ; 41: 100630, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37180052

ABSTRACT

Objectives: In head and neck squamous cell carcinoma (HNSCC), tumors negative for Human Papillomavirus (HPV) remain a difficult to treat entity and the morbidity of current multimodal treatment is high. Radiotherapy in combination with molecular targeting could represent suitable, less toxic treatment options especially for cisplatin ineligible patients. Therefore, we tested dual targeting of PARP and the intra-S/G2 checkpoint through Wee1 inhibition for its radiosensitizing capacity in radioresistant HPV-negative HNSCC cells. Materials and methods: Three radioresistant HPV-negative cell lines (HSC4, SAS, UT-SCC-60a) were treated with olaparib, adavosertib and ionizing irradiation. The impact on cell cycle, G2 arrest and replication stress was assessed through flow cytometry after DAPI, phospho-histone H3 and γH2AX staining. Long term cell survival after treatment was determined through colony formation assay and DNA double-strand break (DSB) levels were assessed through quantification of nuclear 53BP1 foci in cell lines and patient-derived HPV± tumor slice cultures. Results: Wee1 and dual targeting induced replication stress but failed to effectively inhibit radiation-induced G2 cell cycle arrest. Single as well as combined inhibition increased radiation sensitivity and residual DSB levels, with the largest effects induced through dual targeting. Dual targeting also enhanced residual DSB levels in patient-derived slice cultures from HPV-negative but not HPV+ HNSCC (5/7 vs. 1/6). Conclusion: We conclude that the combined inhibition of PARP and Wee1 results in enhanced residual DNA damage levels after irradiation and effectively sensitizes radioresistant HPV-negative HNSCC cells. Ex vivo tumor slice cultures may predict the response of individual patients with HPV-negative HNSCC to this dual targeting approach.

4.
Radiat Oncol ; 18(1): 19, 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36709315

ABSTRACT

BACKGROUND: The gene of the Epidermal growth factor receptor (EGFR) is one of the most frequently altered genes in glioblastoma (GBM), with deletions of exons 2-7 (EGFRvIII) being amongst the most common genomic mutations. EGFRvIII is heterogeneously expressed in GBM. We already showed that EGFRvIII expression has an impact on chemosensitivity, replication stress, and the DNA damage response. Wee1 kinase is a major regulator of the DNA damage induced G2 checkpoint. It is highly expressed in GBM and its overexpression is associated with poor prognosis. Since Wee1 inhibition can lead to radiosensitization of EGFRvIII-negative (EGFRvIII-) GBM cells, we asked, if Wee1 inhibition is sufficient to radiosensitize also EGFRvIII-positive (EGFRvIII+) GBM cells. METHODS: We used the clinically relevant Wee1 inhibitor adavosertib and two pairs of isogenetic GBM cell lines with and without endogenous EGFRvIII expression exhibiting different TP53 status. Moreover, human GBM samples displaying heterogenous EGFRvIII expression were analyzed. Expression of Wee1 was assessed by Western blot and respectively immunohistochemistry. The impact of Wee1 inhibition in combination with irradiation on cell cycle and cell survival was analyzed by flow cytometry and colony formation assay. RESULTS: Analysis of GBM cells and patient samples revealed a higher expression of Wee1 in EGFRvIII+ cells compared to their EGFRvIII- counterparts. Downregulation of EGFRvIII expression by siRNA resulted in a strong decrease in Wee1 expression. Wee1 inhibition efficiently abrogated radiation-induced G2-arrest and caused radiosensitization, without obvious differences between EGFRvIII- and EGFRvIII+ GBM cells. CONCLUSION: We conclude that the inhibition of Wee1 is an effective targeting approach for the radiosensitization of both EGFRvIII- and EGFRvIII+ GBM cells and may therefore represent a promising new therapeutic option to increase response to radiotherapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Line, Tumor , Brain Neoplasms/radiotherapy , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/therapeutic use
5.
Neuro Oncol ; 25(8): 1518-1529, 2023 08 03.
Article in English | MEDLINE | ID: mdl-36715306

ABSTRACT

BACKGROUND: The prognostic impact of clinical risk factors and DNA methylation patterns in sonic hedgehog (SHH)-activated early childhood desmoplastic/nodular medulloblastoma (DMB) or medulloblastoma with extensive nodularity (MBEN) were evaluated to better identify patients at risk for relapse. METHODS: One hundred and forty-four patients with DMB (n = 99) or MBEN (n = 45) aged <5 years and treated with radiation-sparing approaches, including intraventricular methotrexate in 132 patients were evaluated. RESULTS: Patients with DMB had less favorable 5-year progression-free survival than MBEN (5y-PFS, 71% [DMB] vs. 93% [MBEN]). Patients aged >3 years were associated with more unfavorable 5y-PFS (47% [>3 years] vs. 85% [<1 year] vs. 84% [1-3 years]). DNA methylation profiles available (n = 78) were reclassified according to the 2021 WHO classification into SHH-1 (n = 39), SHH-2 (n = 38), and SHH-3 (n = 1). Hierarchical clustering delineated 2 subgroups among SHH-2: SHH-2a (n = 19) and SHH-2b (n = 19). Patients with SHH-2b medulloblastoma were older, predominantly displayed DMB histology, and were more often located in the cerebellar hemispheres. Chromosome 9q losses were more frequent in SHH-2b, while few chromosomal alterations were observed in SHH-2a. SHH-2b medulloblastoma carried a significantly increased relapse risk (5y-PFS: 58% [SHH-2b] vs. 83% [SHH-1] vs. 95% [SHH-2a]). Subclassification of SHH-2 with key clinical and cytogenetic characteristics was confirmed using 2 independent cohorts (total n = 188). Gene mutation analysis revealed a correlation of SHH-2a with SMO mutations. CONCLUSIONS: These data suggest further heterogeneity within early childhood SHH-DMB/MBEN: SHH-2 splits into a very low-risk group SHH-2a enriched for MBEN histology and SMO mutations, and SHH-2b comprising older DMB patients with a higher risk of relapse.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child, Preschool , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Hedgehog Proteins/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Progression-Free Survival
6.
Acta Neuropathol ; 144(6): 1143-1156, 2022 12.
Article in English | MEDLINE | ID: mdl-36181537

ABSTRACT

This study aimed to re-evaluate the prognostic impact of TP53 mutations and to identify specific chromosomal aberrations as possible prognostic markers in WNT-activated medulloblastoma (WNT-MB). In a cohort of 191 patients with WNT-MBs, mutations in CTNNB1, APC, and TP53 were analyzed by DNA sequencing. Chromosomal copy-number aberrations were assessed by molecular inversion probe technology (MIP), SNP6, or 850k methylation array hybridization. Prognostic impact was evaluated in 120 patients with follow-up data from the HIT2000 medulloblastoma trial or HIT registries. CTNNB1 mutations were present in 92.2%, and APC mutations in 6.8% of samples. One CTNNB1 wild-type tumor gained WNT activation due to homozygous FBXW7 deletion. Monosomy 6 was present in 78.6%, and more frequent in children than adults. 16.1% of tumor samples showed TP53 mutations, of those 60% with nuclear positivity for the p53 protein. Loss of heterozygosity at the TP53 locus (chromosome 17p13.1) was found in 40.7% (11/27) of TP53 mutant tumor samples and in 12.6% of TP53 wild-type cases (13/103). Patients with tumors harboring TP53 mutations showed significant worse progression-free survival (PFS; 5-year-PFS 68% versus 93%, p = 0.001), and were enriched for chromosomes 17p (p = 0.001), 10, and 13 losses. Gains of OTX2 (14q22.3) occurred in 38.9% of samples and were associated with poor PFS and OS (5-year-PFS 72% versus 93%, p = 0.017 resp. 5-year-OS 83% versus 97%, p = 0.006). Multivariable Cox regression analysis for PFS/OS identified both genetic alterations as independent prognostic markers. Our data suggest that patients with WNT-MB carrying TP53 mutations or OTX2 gains (58.1%) are at higher risk of relapse. Eligibility of these patients for therapy de-escalation trials needs to be debated.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Adult , Child , Humans , Cerebellar Neoplasms/genetics , Chromosome Aberrations , Medulloblastoma/pathology , Mutation/genetics , Neoplasm Recurrence, Local , Otx Transcription Factors/genetics , Prognosis , Tumor Suppressor Protein p53/genetics , Clinical Trials as Topic
7.
Front Oncol ; 12: 765968, 2022.
Article in English | MEDLINE | ID: mdl-35719921

ABSTRACT

Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV-) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV- HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV- ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV- strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV- cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.

8.
Neurooncol Adv ; 4(1): vdab180, 2022.
Article in English | MEDLINE | ID: mdl-35274102

ABSTRACT

Background: The oncogene epidermal growth factor receptor variant III (EGFRvIII) is expressed in approximately one-third of all glioblastomas (GBMs). So far it is not clear if EGFRvIII expression induces replication stress in GBM cells, which might serve as a therapeutical target. Methods: Isogenetic EGFRvIII- and EGFRvIII+ cell lines with endogenous EGFRvIII expression were used. Markers of oncogenic and replication stress such as γH2AX, RPA, 53BP1, ATR, and CHK1 were analyzed using western blot, immunofluorescence, and flow cytometry. The DNA fiber assay was performed to analyze replication, transcription was measured by incorporation of EU, and genomic instability was investigated by micronuclei and CGH-Array analysis. Immunohistochemistry staining was used to detect replication stress markers and R-loops in human GBM samples. Results: EGFRvIII+ cells exhibit an activated replication stress response, increased spontaneous DNA damage, elevated levels of single-stranded DNA, and reduced DNA replication velocity, which are all indicative characteristics of replication stress. Furthermore, we show here that EGFRvIII expression is linked to increased genomic instability. EGFRvIII-expressing cells display elevated RNA synthesis and R-loop formation, which could also be confirmed in EGFRvIII-positive GBM patient samples. Targeting replication stress by irinotecan resulted in increased sensitivity of EGFRvIII+ cells. Conclusion: This study demonstrates that EGFRvIII expression is associated with increased replication stress, R-loop accumulation, and genomic instability. This might contribute to intratumoral heterogeneity but may also be exploited for individualized therapy approaches.

9.
Front Oncol ; 11: 683688, 2021.
Article in English | MEDLINE | ID: mdl-34354944

ABSTRACT

In head and neck squamous cell carcinoma (HNSCC), tumors positive for human papillomavirus (HPV) represent a distinct biological entity with favorable prognosis. An enhanced radiation sensitivity of these tumors is evident in the clinic and on the cellular level when comparing HPV-positive and HPV-negative HNSCC cell lines. We could show that the underlying mechanism is a defect in DNA double-strand break repair associated with a profound and sustained G2 arrest. This defect can be exploited by molecular targeting approaches additionally compromising the DNA damage response to further enhance their radiation sensitivity, which may offer new opportunities in the setting of future de-intensified regimes. Against this background, we tested combined targeting of PARP and the DNA damage-induced intra-S/G2 cell cycle checkpoints to achieve effective radiosensitization. Enhancing CDK1/2 activity through the Wee1 inhibitor adavosertib or a combination of Wee1 and Chk1 inhibition resulted in an abrogation of the radiation-induced G2 cell cycle arrest and induction of replication stress as assessed by γH2AX and chromatin-bound RPA levels in S phase cells. Addition of the PARP inhibitor olaparib had little influence on these endpoints, irrespective of checkpoint inhibition. Combined PARP/Wee1 targeting did not result in an enhancement in the absolute number of residual, radiation induced 53BP1 foci as markers of DNA double-strand breaks but it induced a shift in foci numbers from S/G2 to G1 phase cells. Most importantly, while sole checkpoint or PARP inhibition induced moderate radiosensitization, their combination was clearly more effective, while exerting little effect in p53/G1 arrest proficient normal human fibroblasts, thus indicating tumor specificity. We conclude that the combined inhibition of PARP and the intra-S/G2 checkpoint is a highly effective approach for the radiosensitization of HPV-positive HNSCC cells and may represent a viable alternative for the current standard of concomitant cisplatin-based chemotherapy. In vivo studies to further evaluate the translational potential are highly warranted.

10.
Int J Cancer ; 149(5): 1166-1180, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33890294

ABSTRACT

Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.


Subject(s)
Biomarkers, Tumor/metabolism , Head and Neck Neoplasms/pathology , src-Family Kinases/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Humans , Phosphorylation , Prognosis , Protein Kinase Inhibitors/pharmacology , Retrospective Studies , Survival Rate , Tissue Array Analysis , Tumor Cells, Cultured , src-Family Kinases/antagonists & inhibitors
11.
Cancers (Basel) ; 12(8)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756332

ABSTRACT

BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway is genetically activated in approximately 50% of glioblastomas (GBs). Its inhibition has been explored clinically but produced disappointing results, potentially due to metabolic effects that protect GB cells against nutrient deprivation and hypoxia. Here, we hypothesized that EGFR activation could disable metabolic adaptation and define a GB cell population sensitive to starvation. METHODS: Using genetically engineered GB cells to model different types of EGFR activation, we analyzed changes in metabolism and cell survival under conditions of the tumor microenvironment. RESULTS: We found that expression of mutant EGFRvIII as well as EGF stimulation of EGFR-overexpressing cells impaired physiological adaptation to starvation and rendered cells sensitive to hypoxia-induced cell death. This was preceded by adenosine triphosphate (ATP) depletion and an increase in glycolysis. Furthermore, EGFRvIII mutant cells had higher levels of mitochondrial superoxides potentially due to decreased metabolic flux into the serine synthesis pathway which was associated with a decrease in the NADPH/NADP+ ratio. CONCLUSIONS: The finding that EGFR activation renders GB cells susceptible to starvation could help to identify a subgroup of patients more likely to benefit from starvation-inducing therapies.

12.
Interface Focus ; 10(2): 20190070, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32194931

ABSTRACT

The limitations of two-dimensional analysis in three-dimensional (3D) cellular imaging impair the accuracy of research findings in biological studies. Here, we report a novel 3D approach to acquisition, analysis and interpretation of tumour spheroid images. Our research interest in mesenchymal-amoeboid transition led to the development of a workflow incorporating the generation and analysis of 3D data with instant structured illumination microscopy and a new ImageJ plugin.

13.
Oncogene ; 39(15): 3041-3055, 2020 04.
Article in English | MEDLINE | ID: mdl-32066879

ABSTRACT

The oncogene epidermal growth factor receptor variant III (EGFRvIII) is frequently expressed in glioblastomas (GBM) but its impact on therapy response is still under controversial debate. Here we wanted to test if EGFRvIII influences the sensitivity towards the alkylating agent temozolomide (TMZ). Therefore, we retrospectively analyzed the survival of 336 GBM patients, demonstrating that under standard treatment, which includes TMZ, EGFRvIII expression is associated with prolonged survival, but only in patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated tumors. Using isogenic GBM cell lines with endogenous EGFRvIII expression we could demonstrate that EGFRvIII increases TMZ sensitivity and results in enhanced numbers of DNA double-strand breaks and a pronounced S/G2-phase arrest after TMZ treatment. We observed a higher expression of DNA mismatch repair (MMR) proteins in EGFRvIII+ cells and patient tumor samples, which was most pronounced for MSH2 and MSH6. EGFRvIII-specific knockdown reduced MMR protein expression thereby increasing TMZ resistance. Subsequent functional kinome profiling revealed an increased activation of p38- and ERK1/2-dependent signaling in EGFRvIII expressing cells, which regulates MMR protein expression downstream of EGFRvIII. In summary, our results demonstrate that the oncoprotein EGFRvIII sensitizes a fraction of GBM to current standard of care treatment through the upregulation of DNA MMR.


Subject(s)
Brain Neoplasms/therapy , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm/genetics , Glioblastoma/therapy , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics , Animals , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Cell Line, Tumor , Chemoradiotherapy/methods , Cohort Studies , DNA Methylation , DNA Mismatch Repair/drug effects , DNA Mismatch Repair/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/mortality , Humans , Kaplan-Meier Estimate , MAP Kinase Signaling System/genetics , Mice , MutS Homolog 2 Protein/genetics , Mutation , Promoter Regions, Genetic/genetics , Retrospective Studies , Temozolomide/therapeutic use , Tumor Suppressor Proteins/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
14.
J Vis Exp ; (151)2019 09 16.
Article in English | MEDLINE | ID: mdl-31566595

ABSTRACT

Drug discovery and development in cancer research is increasingly being based on drug screens in a 3D format. Novel inhibitors targeting the migratory and invasive potential of cancer cells, and consequently the metastatic spread of disease, are being discovered and considered as complementary treatments in highly invasive cancers such as gliomas. Thus, generating data enabling the detailed analyses of cells in a 3D environment following the addition of a drug is required. The methodology described here, combining spheroid invasion assays with high-resolution image capture and data analysis by confocal laser scanning microscopy (CLSM), enabled detailed characterization of the effects of the potential anti-migratory inhibitor MI-192 on glioma cells. Spheroids were generated from cell lines for invasion assays in low adherent 96-well plates and then prepared for CLSM analysis. The described workflow was preferred over other commonly used spheroid-generating techniques due to both ease and reproducibility. This, combined with the enhanced image resolution attained by confocal microscopy compared to conventional wide-field approaches, allowed the identification and analysis of distinct morphological changes in migratory cells in a 3D environment following treatment with the migrastatic drug MI-192.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/physiology , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Drug Discovery/methods , Glioma/pathology , Humans , Microscopy, Confocal/methods , Neoplasm Invasiveness/pathology , Reproducibility of Results , Spheroids, Cellular/drug effects
15.
Sci Rep ; 9(1): 13564, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537844

ABSTRACT

Overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC) is considered to cause increased EGFR activity, which adds to tumorigenicity and therapy resistance. Since it is still unclear, whether EGFR expression is indeed associated with increased activity in HNSCC, we analyzed the relationship between EGFR expression and auto-phosphorylation as a surrogate marker for activity. We used a tissue micro array, fresh frozen HNSCC tumor and corresponding normal tissue samples and a large panel of HNSCC cell lines. While we observed substantial overexpression only in approximately 20% of HNSCC, we also observed strong discrepancies between EGFR protein expression and auto-phosphorylation in HNSCC cell lines as well as in tumor specimens using Western blot and SH2-profiling; for the majority of HNSCC EGFR expression therefore seems not to be correlated with EGFR auto-phosphorylation. Blocking of EGFR activity by cetuximab and erlotinib points to increased EGFR activity in samples with increased basal auto-phosphorylation. However, we could also identify cells with low basal phosphorylation but relevant EGFR activity. In summary, our data demonstrate that EGFR expression and activity are not well correlated. Therefore EGFR positivity is no reliable surrogate marker for EGFR activity, arguing the need for alternative biomarkers or functional predictive tests.


Subject(s)
Gene Expression Profiling/methods , Head and Neck Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Line, Tumor , Cetuximab/pharmacology , Down-Regulation/drug effects , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Homeostasis/drug effects , Humans , Phosphorylation/drug effects , Tissue Array Analysis
16.
Nanoscale ; 8(48): 20037-20047, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27883139

ABSTRACT

For receptor tyrosine kinases supramolecular organization on the cell membrane is critical for their function. Super-resolution fluorescence microscopy techniques have offered new opportunities for the analysis of single receptor localization. Here, we analysed the cluster formation of the epidermal growth factor receptor variant III (EGFRvIII), a deletion variant which is expressed in glioblastoma. The constitutively activated variant EGFRvIII is expressed in cells with an egfr gene amplification and is thought to enhance the tumorigenic potential especially of glioblastoma cells. Due to the lack of an adequate model system, it is still unclear how endogenous EGFRvIII expression alters cellular signalling and if it is organized in clusters like the wild type receptor. We have recently described the establishment of two pairs of iso-genetic cell lines (BS153 and DKMG), displaying endogenous EGFRvIII expression or not. Using these cell lines we investigated single receptor localization of EGFRvIII by high precision localization microscopy. Cluster analysis revealed that EGFRvIII is present in clusters on the surface of the cells, with about 60% or even more receptor molecules being assembled in clusters of approximately 100 nm in diameter whereby the cluster definition was iteratively determined. The signal to signal distance may indicate dimer formation while signal quantification indicates 1 × 106-5 × 106 EGFRvIII molecules per cell. Altogether, these data give unique insights into the membrane surface localization of EGFRvIII in glioblastoma cells. These insights will help to unveil the function of this tumour associated receptor variant which might lead to a better understanding of glioblastoma and therefore could lead to improved therapy approaches.


Subject(s)
Brain Neoplasms/metabolism , ErbB Receptors/analysis , Glioblastoma/metabolism , Microscopy , Animals , Cell Line, Tumor , Humans , Mice
17.
Oncotarget ; 7(38): 61988-61995, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27542273

ABSTRACT

BACKGROUND: Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. METHODS: The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. RESULTS: In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. CONCLUSION: Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/therapeutic use , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival , Dose-Response Relationship, Radiation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/radiation effects , Humans , MAP Kinase Signaling System , Niacinamide/therapeutic use , Protein Kinase Inhibitors/pharmacology , Radiation Tolerance , Signal Transduction , Sorafenib , X-Rays
18.
Oncotarget ; 7(29): 45122-45133, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27281611

ABSTRACT

The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/pathology , ErbB Receptors/antagonists & inhibitors , Head and Neck Neoplasms/pathology , Radiation Tolerance/drug effects , Carcinoma, Squamous Cell/genetics , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cetuximab/pharmacology , Erlotinib Hydrochloride/pharmacology , Head and Neck Neoplasms/genetics , Humans , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Protein p53/genetics
19.
Oncotarget ; 6(32): 33867-77, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26418954

ABSTRACT

BACKGROUND: Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. METHODS: Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (-) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. RESULTS: DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII- and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII- BS153 cells. CONCLUSION: The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Quinazolines/therapeutic use , Antineoplastic Agents/therapeutic use , Brain Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Separation , Cell Survival , DNA Breaks, Double-Stranded , DNA Repair , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Flow Cytometry , Gefitinib , Glioblastoma/metabolism , Humans , Microscopy, Fluorescence , Radiation Tolerance , Signal Transduction , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...