Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447782

ABSTRACT

(1) Background: Even though music therapy is acknowledged to have positive benefits in neurology, there is still a lack of knowledge in the literature about the applicability of music treatments in clinical practice with a neurological population using wearable devices. (2) Methods: a systematic review was conducted following PRISMA 2020 guidelines on the 29 October 2022, searching in five databases: PubMed, PEDro, Medline, Web of Science, and Science Direct. (3) Results: A total of 2964 articles were found, including 413 from PubMed, 248 from Web of Science, 2110 from Science Direct, 163 from Medline, and none from PEDro. Duplicate entries, of which there were 1262, were eliminated. In the first screening phase, 1702 papers were screened for title and abstract. Subsequently, 1667 papers were removed, based on population, duplicate, outcome, and poor study design. Only 15 studies were considered after 35 papers had their full texts verified. Results showed significant values of spatiotemporal gait parameters in music-based therapy rhythmic auditory stimulation (RAS), including speed, stride length, cadence, and ROM. (4) Conclusions: The current findings confirm the value of music-based therapy RAS as a favorable and effective tool to implement in the health care system for the rehabilitation of patients with movement disorders.


Subject(s)
Music Therapy , Music , Parkinson Disease , Wearable Electronic Devices , Humans , Music Therapy/methods , Acoustic Stimulation/methods , Gait/physiology , Parkinson Disease/rehabilitation
2.
Neurol Sci ; 43(5): 2995-3006, 2022 May.
Article in English | MEDLINE | ID: mdl-35175439

ABSTRACT

OBJECTIVE: In the last decade, there is a growing interest in the use of virtual reality for rehabilitation in clinical and home settings. The aim of this systematic review is to do a summary of the current evidence on the effect of home-based virtual reality training and telerehabilitation on postural balance in individuals with central neurological disorders. METHODS: Literature was searched in PubMed, Web of Science, PEDro, ScienceDirect, and MEDLINE. Randomized controlled trials (RCTs) evaluating the effect of home-based virtual reality (VR) training and telerehabilitation (TR) on postural balance in patients with Parkinson's disease, Multiple sclerosis or stroke. Studies were imported to EndNote and Excel to perform two screening phases by four reviewers. Risk of bias was assessed using PEDro scale and Cochrane assessment tool for risk of bias. Synthesis of the data on comparative outcomes was performed using RevMan software. RESULTS: Seven RCTs were included, with all three pathologies represented. VR and TR consisted of a training device (e.g., Nintendo Wii or Xbox 360) and a monitoring device (e.g., Skype or Microsoft Kinect). Five studies used the Berg Balance Scale (BBS) for measuring postural balance. Across studies, there was an improvement in BBS scores over time in both experimental and control groups, and the effect remained at follow-up for both groups. However, there was no significant difference between  groups post-intervention (MD = 0.74, p = 0.45). CONCLUSION: Home-based VR and TR can be used as prolongation to conventional therapy.


Subject(s)
Multiple Sclerosis , Parkinson Disease , Stroke Rehabilitation , Stroke , Telerehabilitation , Virtual Reality , Humans , Multiple Sclerosis/complications , Parkinson Disease/complications , Parkinson Disease/rehabilitation , Postural Balance/physiology , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...