Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 66(2): 328-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27162504

ABSTRACT

Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar 'Katahdin' possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. 'Katahdin' and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars 'Wauseon', 'Katahdin', 'Magura', 'Calrose', and 'Cayuga' did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that 'Wauseon' is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.

2.
Theor Appl Genet ; 129(1): 131-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467474

ABSTRACT

KEY MESSAGE: Most QTL for leaf sucrose content map to positions that are similar to positions of QTL for tuber starch content in diploid potato. In the present study, using a diploid potato mapping population and Diversity Array Technology (DArT) markers, we identified twelve quantitative trait loci (QTL) for tuber starch content on seven potato chromosomes: I, II, III, VIII, X, XI, and XII. The most important QTL spanned a wide region of chromosome I (42.0­104.6 cM) with peaks at 63 and 84 cM which explained 17.6 and 19.2% of the phenotypic variation, respectively. ADP-glucose pyrophosphorylase (AGPase) is the key enzyme for starch biosynthesis. The gene encoding the large subunit of this enzyme, AGPaseS-a, was localized to chromosome I at 102.3 cM and accounted for 15.2% of the variance in tuber starch content. A more than 100-fold higher expression of this gene was observed in RT-qPCR assay in plants with the marker allele AGPaseS-a1334. This study is the first to report QTL for sucrose content in potato leaves. QTL for sucrose content in leaves were located on eight potato chromosomes: I, II, III, V, VIII, IX, X and XII. In 5-week-old plants, only one QTL for leaf sucrose content was detected after 8 h of darkness; four QTL were detected after 8 h of illumination. In 11-week-old plants, 6 and 3 QTL were identified after dark and light phases, respectively. Of fourteen QTL for leaf sucrose content, eleven mapped to positions that were similar to QTL for tuber starch content. These results provide genetic information for further research examining the relationships between metabolic carbon molecule sources and sinks in potato plants.


Subject(s)
Plant Leaves/chemistry , Plant Tubers/chemistry , Quantitative Trait Loci , Solanum tuberosum/genetics , Starch/chemistry , Sucrose/chemistry , Chromosome Mapping , Cloning, Molecular , Diploidy , Genetic Linkage , Genetic Markers , Glucose-1-Phosphate Adenylyltransferase/genetics , Phenotype , Plant Proteins/genetics , Solanum tuberosum/enzymology
3.
Mol Breed ; 35(12): 224, 2015.
Article in English | MEDLINE | ID: mdl-26612975

ABSTRACT

Potato (Solanum tuberosum L.) tubers exhibit significant variation in reducing sugar content directly after harvest, cold storage and reconditioning. Here, we performed QTL analysis for chip color, which is strongly influenced by reducing sugar content, in a diploid potato mapping population. Two QTL on chromosomes I and VI were detected for chip color after harvest and reconditioning. Only one region on chromosome VI was linked with cold-induced sweetening. Using the RT-PCR technique, we showed differential expression of the auxin-regulated protein (AuxRP) gene. The AuxRP transcript was presented in light chip color parental clone DG 97-952 and the RNA progeny of the bulk sample consisting of light chip color phenotypes after cold storage. This amplicon was absent in dark chip parental clone DG 08-26/39 and the RNA bulk sample of dark chip progeny. Genetic variation of AuxRP explained up to 16.6 and 15.2 % of the phenotypic variance after harvest and 3 months of storage at 4 °C, respectively. Using an alternative approach, the RDA-cDNA method was used to recognize 25 gene sequences, of which 11 could be assigned to potato chromosome VI. One of these genes, Heat-shock protein 90 (Hsp90), demonstrated higher mRNA and protein expression in RT-qPCR and western blotting assays in the dark chip color progeny bulk sample compared with the light chip color progeny bulk sample. Our study, for the first time, suggests that the AuxRP and Hsp90 genes are novel candidate genes capable of influencing the chip color of potato tubers.

4.
PLoS One ; 10(7): e0132683, 2015.
Article in English | MEDLINE | ID: mdl-26172952

ABSTRACT

Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.


Subject(s)
Annexins/metabolism , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Annexins/genetics , Chlorophyll/metabolism , Droughts , Gene Expression Regulation, Plant , Genes, Plant , Light , Oxidative Stress , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Stress, Physiological , Xanthophylls/metabolism
5.
Mol Breed ; 34: 267-271, 2014.
Article in English | MEDLINE | ID: mdl-24860254

ABSTRACT

Potato virus Y (PVY) is one of the most important viruses affecting potato (Solanum tuberosum) production. In this study, a novel hypersensitive response (HR) gene, Ny-2, conferring resistance to PVY was mapped on potato chromosome XI in cultivar Romula. In cultivars Albatros and Sekwana, the Ny-1 gene was mapped on chromosome IX. In cv. Romula, the local lesions appeared in leaves inoculated with the PVYN-Wi isolate at 20 and 28 °C; PVY systemic infections were only occasionally observed at the higher temperature. In cvs. Albatros and Sekwana, expression of the necrotic reaction to virus infection was temperature-dependent. PVYN-Wi was localized at 20 °C; at 28 °C, the systemic, symptomless infection was observed. We developed the B11.61600 marker co-segregating with Ny-2 and the S1d11 marker specific for the Ny-1 gene. Fifty potato cultivars were tested with markers B11.6 and S1d11 and marker SC895 linked to the Ny-1 gene in cv. Rywal. These results indicated the utility of these markers for marker-assisted selection of HR-like PVY resistance in potato breeding programs.

6.
Plant Biotechnol J ; 11(4): 459-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23231480

ABSTRACT

Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA-hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water-deficit tolerance of crop plants.


Subject(s)
Droughts , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Solanum tuberosum/genetics
7.
J Appl Genet ; 49(1): 45-7, 2008.
Article in English | MEDLINE | ID: mdl-18263969

ABSTRACT

The Ns gene confers resistance of potato to Potato virus S (PVS). Sixteen German and Dutch potato cultivars, all registered in Poland, were found to be susceptible to PVS infection. However, scoring of the cultivars for the presence of the Ns-linked SCAR marker SC811(454) revealed additional amplicons with a similar electrophoretic migration rate as that of SC811(454), which resulted in ambiguous determination of the genotype at the Ns locus. MboI or FokI treatment of the PCR products allowed to detect their Ns-unspecificity in PVS-susceptible potato cultivars.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/genetics , Plant Diseases/virology , Potyvirus/pathogenicity , Random Amplified Polymorphic DNA Technique , Solanum tuberosum/virology , Animals , False Positive Reactions , Genetic Markers , Genetic Predisposition to Disease , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Plant Diseases/genetics , Potyvirus/genetics , Solanum tuberosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...