Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 20(7): 4520-31, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23250727

ABSTRACT

Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kow 2.59), triethyl-chloro-phosphate (TCEP) (log Kow 1.44), tributyl phosphate (TBP) (log Kow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log Kow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log Kow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6-1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10-20 and 1.7-4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015-0.110). Despite that DEET and NBBS have log Kow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.


Subject(s)
Crops, Agricultural/chemistry , Environmental Monitoring/methods , Food Chain , Food Contamination/analysis , Organophosphates/pharmacokinetics , Sewage/analysis , Animal Feed/analysis , DEET/analysis , DEET/chemistry , Daucus carota/chemistry , Flame Retardants/analysis , Flame Retardants/pharmacokinetics , Hordeum/chemistry , Organophosphates/analysis , Organophosphates/chemistry , Plant Roots/chemistry , Plasticizers/analysis , Plasticizers/chemistry , Risk Assessment , Seeds/chemistry , Sewage/chemistry , Soil/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Sulfonamides/analysis , Sulfonamides/chemistry , Triticum/chemistry
3.
Ambio ; 37(1): 2-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18341112

ABSTRACT

Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.


Subject(s)
Carbon/analysis , Climate , Ecosystem , Nitrogen Oxides/analysis , Seasons , Air , Chemical Precipitation , Conservation of Natural Resources , Fresh Water , Nitrates/analysis , Norway , Oxides/analysis , Soil , Sulfur
4.
Ambio ; 37(1): 18-28, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18341114

ABSTRACT

To provide baseline data for climate manipulation experiments in 11 small (30-268 m2) headwater catchments at Storgama, Telemark County, Southern Norway, we assessed the natural variability in site characteristics and runoff quality. Annual average concentrations in runoff at the sites have coefficients of variation between 26-61%, with the smallest values for total organic carbon (TOC) and carbon to nitrogen (C/N) ratios and the largest for inorganic nitrogen (N). The catchments have between two and five times higher concentrations of inorganic N, TOC, and total phosphorus than the larger (0.6 km2) Storgama watershed nearby. Concentrations of TOC and TON in runoff tend to increase with soil C and N content and with the volume of soil in the catchment. For nitrate (NO3) and ammonium in runoff, the reverse is true. In wet years the proportion of bare rock is a major predictor for the annual average NO3 concentration in runoff.


Subject(s)
Carbon/analysis , Nitrogen/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Air Pollution , Chemical Precipitation , Ecosystem , Models, Theoretical , Nitrates/analysis , Norway , Seasons
5.
Ambio ; 37(1): 48-55, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18341117

ABSTRACT

Projected changes in climate in Southern Norway include increases in summer and autumn precipitation. This may affect leaching of dissolved organic matter (DOM) from soils. Effects of experimentally added extra precipitation (10 mm week) during the growing season of 3 years (2004-2006) to small headwater catchments at Storgama (59 degrees 0'N, 550-600 m a.s.l.) on leaching of total organic carbon (TOC) and total organic nitrogen (TON) were assessed. Extra precipitation did not have a significant effect on average TOC and TON concentrations in runoff. Thus, fluxes of TOC and TON increased nearly proportionally with water fluxes. This suggests that a store of adsorbed and potentially mobile TOC and TON in catchment soils buffers the concentration of DOM in runoff. The size and dynamics of the pool of TOC and TON depends on the balance between production and leaching rates. Infrequent short droughts had only small effects on TOC and TON fluxes in runoff from the reference catchments.


Subject(s)
Carbon/analysis , Climate , Nitrogen/analysis , Rain , Seasons , Fresh Water/chemistry , Norway , Soil , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 39(14): 5234-40, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16082951

ABSTRACT

While SO4(2-) concentrations in runoff are decreasing in many catchments in Europe, present day S output still exceeds the S input for most forested catchments in Europe and North America. Here we report that a large part of the observed SO4(2-) in the runoff at a large-scale catchment study site (the Gårdsjön roof experiment in southwestern Sweden) originates from the organic S pool in the O horizon. Budget estimates comparing soil S pools showed reductions in the S pool of 57 mmol of S m(-2) in the O horizon and 26 mmol of SO4(2-) m(-2) in the mineral Bs horizon after excluding anthropogenic deposition for four years. There was an increase of about 1% per hundred in the delta34S(SO4), value of the mineral soil SO4(2-) between 1990 and 1995 (average and 95% confidence interval of 6.2 +/- 0.6 and 7.7 +/- 0.6% per hundred, respectively), but the delta34S(SO4) values in the E horizon are still much lower than the sprinkler water input of +19.7% per hundred, although the horizon has only a small extractable SO4(2-) pool. After nine years (1991-2000) of artificially supplying S inputs comparable with those amounts supplied by preindustrial rain, the amount of S in runoff still exceeded the input by 30%. This extra 30% corresponds to a loss of 3 mmol of S m(-2) year(-1), compared to the soil S organic O horizon pool of 1098 mmol m(-2) in 1990, suggesting that recovery is delayed for decades, at least.


Subject(s)
Sulfates/chemistry , Sulfur/analysis , Sulfur/chemistry , Water Pollutants/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Rain , Sweden , Water Movements , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...