Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 191: 105369, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963938

ABSTRACT

One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.


Subject(s)
Beauveria , Insecticides , Moths , Animals , Antifungal Agents , Antioxidants , Insecta , Insecticides/pharmacology , Pest Control, Biological/methods
2.
PLoS One ; 17(7): e0271460, 2022.
Article in English | MEDLINE | ID: mdl-35834517

ABSTRACT

The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect's immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.


Subject(s)
Beauveria , Lepidoptera , Animals , Beauveria/physiology , Chromatography, Liquid , Hydrogen Peroxide/metabolism , Lepidoptera/microbiology , Tandem Mass Spectrometry , Virulence
3.
Insects ; 13(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055935

ABSTRACT

Lema bilineata Germar (Coleoptera: Chrysomelidae) was recently reported to damage Physalis peruviana crops in Brazil. Given the potential for inflicting damage on other Solanaceae species and the lack of alternatives for controlling this pest, we assessed the pathogenicity of 15 Beauveria isolates against L. bilineata adults in vitro. In addition, three of these isolates were tested for their ovicidal effect against L. bilineata eggs. Fungal strains were isolated from mummified corpses of L. bilineata collected in a non-commercial field in Paraná, Brazil. The isolates were identified as Beauveria bassiana using molecular markers. Lema bilineata adults were susceptible to conidial suspensions of all these isolates at a concentration of 108 conidia mL-1. Deaths caused by fungal extrusion were confirmed. Three strains were found to be more virulent against L. bilineata adults and showed ovicidal effects. This is the first study on entomopathogenic fungi isolated from dead insects collected from P. peruviana crops and tested against L. bilineata carried out in Brazil. The results obtained in the laboratory indicate the high potential of the use of three B. bassiana strains against L. bilineata as a biocontrol agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...