Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Front Neuroanat ; 17: 1282941, 2023.
Article in English | MEDLINE | ID: mdl-38020214

ABSTRACT

The superior colliculus is a critical brain region involved in processing visual information. It receives visual input directly from the retina, as well as via a projection from primary visual cortex. Here we determine which cell types in the superficial superior colliculus receive visual input from primary visual cortex in mice. Neurons in the superficial layers of the superior colliculus were classified into four groups - Wide-field, narrow-field, horizontal and stellate - based on their morphological and electrophysiological properties. To determine functional connections between V1 and these four different cell types we expressed Channelrhodopsin2 in primary visual cortex and then optically stimulated these axons while recording from different neurons in the superficial superior colliculus using whole-cell patch-clamp recording in vitro. We found that all four cell types in the superficial layers of the superior colliculus received monosynaptic (direct) input from V1. Wide-field neurons were more likely than other cell types to receive primary visual cortex input. Our results provide information on the cell specificity of the primary visual cortex to superior colliculus projection, increasing our understanding of how visual information is processed in the superior colliculus at the single cell level.

2.
STAR Protoc ; 4(1): 101963, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36542520

ABSTRACT

In vivo whole-cell recording, when combined with morphological characterization after biocytin labeling, is a powerful technique to study subthreshold synaptic processing in cell-type-identified neuronal populations. Here, we describe steps for performing whole-cell recordings in the superior colliculus of urethane-anesthetized mice, a major visual processing region in the rodent brain. We detail two types of visual stimulation techniques: full-field light-emitting diode (LED) flashes and visual stimuli shown on monitors. While we focus on superior colliculus, this protocol is applicable to other brain areas.


Subject(s)
Neurons , Superior Colliculi , Mice , Animals , Superior Colliculi/physiology , Patch-Clamp Techniques , Neurons/physiology , Visual Perception/physiology , Photic Stimulation
3.
Cell Rep ; 41(11): 111787, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516769

ABSTRACT

Neurons receive synaptic input primarily onto their dendrites. While we know much about the electrical properties of dendrites in rodents, we have only just started to describe their properties in the human brain. Here, we investigate the capacity of human dendrites to generate NMDA-receptor-dependent spikes (NMDA spikes). Using dendritic glutamate iontophoresis, as well as local dendritic synaptic stimulation, we find that human layer 2/3 pyramidal neurons can generate dendritic NMDA spikes. The capacity to evoke NMDA spikes in human neurons, however, was significantly reduced compared with that in rodents. Simulations in morphologically realistic and simplified models indicated that human neurons have a higher synaptic threshold for NMDA spike generation primarily due to the wider diameter of their dendrites. In summary, we find reduced NMDA spike generation in human compared with rodent layer 2/3 pyramidal neurons and provide evidence that this is due to the wider diameter of human dendrites.


Subject(s)
Dendrites , N-Methylaspartate , Humans , Dendrites/physiology , Pyramidal Cells/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Neurons/physiology , Action Potentials/physiology
4.
Neuroscience ; 489: 98-110, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34480986

ABSTRACT

The whole-cell voltage clamp technique is commonly used to estimate synaptic conductances. While previous work has shown how these estimates are affected by series resistance and space clamp errors during isolated synaptic events, how voltage clamp errors impact on synaptic conductance estimates during concurrent excitation and inhibition is less clear. This issue is particularly relevant given that many studies now use the whole-cell voltage clamp technique to estimate synaptic conductances in vivo, where both excitation and inhibition are intact. Using both simplistic and morphologically realistic models, we investigate how imperfect voltage clamp conditions distort estimates of excitatory and inhibitory synaptic conductance estimated using the Borg-Graham method during concurrent synaptic input onto dendrites. These simulations demonstrate that dendritically located conductances are underestimated even when dynamic clamp reinjection faithfully reproduces the voltage response at the soma to the actual conductances. Inhibitory conductances are underestimated more than excitatory conductances, leading to errors in the excitatory to inhibitory conductance ratio and negative inhibitory conductance estimates during distal inhibition. Interactions between unclamped dendritic excitatory and inhibitory conductances also introduce correlations when the actual conductances are uncorrelated, as well as distortions in the time course of estimated excitatory and inhibitory conductances. Finally, we show that space clamp errors are exacerbated by the inclusion of dendritic voltage-activated conductances. In summary, we highlight issues with the interpretation of synaptic conductance estimates obtained using somatic whole-cell voltage clamp during concurrent excitatory and inhibitory input to neurons with dendrites.


Subject(s)
Dendrites , Models, Neurological , Dendrites/physiology , Neurons/physiology , Patch-Clamp Techniques , Synapses/physiology
6.
Nat Commun ; 11(1): 1693, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245963

ABSTRACT

The cortex modulates activity in superior colliculus via a direct projection. What is largely unknown is whether (and if so how) the superior colliculus modulates activity in the cortex. Here, we investigate this issue and show that optogenetic activation of superior colliculus changes the input-output relationship of neurons in somatosensory cortex, enhancing responses to low amplitude whisker deflections. While there is no direct pathway from superior colliculus to somatosensory cortex, we found that activation of superior colliculus drives spiking in the posterior medial (POm) nucleus of the thalamus via a powerful monosynaptic pathway. Furthermore, POm neurons receiving input from superior colliculus provide monosynaptic excitatory input to somatosensory cortex. Silencing POm abolished the capacity of superior colliculus to modulate cortical whisker responses. Our findings indicate that the superior colliculus, which plays a key role in attention, modulates sensory processing in somatosensory cortex via a powerful di-synaptic pathway through the thalamus.


Subject(s)
Somatosensory Cortex/physiology , Superior Colliculi/physiology , Ventral Thalamic Nuclei/physiology , Vibrissae/physiology , Animals , Electrodes, Implanted , Male , Mice , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Somatosensory Cortex/cytology , Stereotaxic Techniques , Ventral Thalamic Nuclei/cytology
7.
J Neurosci ; 39(40): 7826-7839, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31420457

ABSTRACT

Dendritic excitability regulates how neurons integrate synaptic inputs and thereby influences neuronal output. As active dendritic events are associated with significant calcium influx they are likely to be modulated by calcium-dependent processes, such as calcium-activated potassium channels. Here we investigate the impact of small conductance calcium-activated potassium channels (SK channels) on dendritic excitability in male and female rat cortical pyramidal neurons in vitro and in vivo Using local applications of the SK channel antagonist apamin in vitro, we show that blocking somatic SK channels enhances action potential output, whereas blocking dendritic SK channels paradoxically reduces the generation of dendritic calcium spikes and associated somatic burst firing. Opposite effects were observed using the SK channel enhancer NS309. The effect of apamin on dendritic SK channels was occluded when R-type calcium channels were blocked, indicating that the inhibitory impact of apamin on dendritic calcium spikes involved R-type calcium channels. Comparable effects were observed in vivo Intracellular application of apamin via the somatic whole-cell recording pipette reduced the medium afterhyperpolarization and increased action potential output during UP states. In contrast, extracellular application of apamin to the cortical surface to block dendritic SK channels shifted the distribution of action potentials within UP states from an initial burst to a more distributed firing pattern, while having no impact on overall action potential firing frequency or UP and DOWN states. These data indicate that somatic and dendritic SK channels have opposite effects on neuronal excitability, with dendritic SK channels counter-intuitively promoting rather than suppressing neuronal output.SIGNIFICANCE STATEMENT Neurons typically receive input from other neurons onto processes called dendrites, and use electrical events such as action potentials for signaling. As electrical events in neurons are usually associated with calcium influx they can be regulated by calcium-dependent processes. One such process is through the activation of calcium-dependent potassium channels, which usually act to reduce action potential signaling. Although this is the case for calcium-dependent potassium channels found at the cell body, we show here that calcium-dependent potassium channels in dendrites of cortical pyramidal neurons counter-intuitively promote rather than suppress action potential output.


Subject(s)
Dendrites/physiology , Pyramidal Cells/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Apamin/pharmacology , Calcium Channels, R-Type/drug effects , Calcium Signaling/drug effects , Dendrites/drug effects , Electrophysiological Phenomena/drug effects , Female , Indoles/pharmacology , Male , Oximes/pharmacology , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Wistar
8.
Neuron ; 103(2): 173-174, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31319042

ABSTRACT

While many studies indicate that dendrites can perform a range of local computations on their inputs, work from the Harnett lab in this issue of Neuron suggests that the vast majority of active dendritic events are synchronized across the somato-dendritic axis of cortical pyramidal neurons.


Subject(s)
Dendrites , Neurons , Pyramidal Cells
9.
Front Syst Neurosci ; 13: 11, 2019.
Article in English | MEDLINE | ID: mdl-30983977

ABSTRACT

The brainstem dorsal column nuclei (DCN) are essential to inform the brain of tactile and proprioceptive events experienced by the body. However, little is known about how ascending somatosensory information is represented in the DCN. Our objective was to investigate the usefulness of high-frequency (HF) and low-frequency (LF) DCN signal features (SFs) in predicting the nerve from which signals were evoked. We also aimed to explore the robustness of DCN SFs and map their relative information content across the brainstem surface. DCN surface potentials were recorded from urethane-anesthetized Wistar rats during sural and peroneal nerve electrical stimulation. Five salient SFs were extracted from each recording electrode of a seven-electrode array. We used a machine learning approach to quantify and rank information content contained within DCN surface-potential signals following peripheral nerve activation. Machine-learning of SF and electrode position combinations was quantified to determine a hierarchy of information importance for resolving the peripheral origin of nerve activation. A supervised back-propagation artificial neural network (ANN) could predict the nerve from which a response was evoked with up to 96.8 ± 0.8% accuracy. Guided by feature-learnability, we maintained high prediction accuracy after reducing ANN algorithm inputs from 35 (5 SFs from 7 electrodes) to 6 (4 SFs from one electrode and 2 SFs from a second electrode). When the number of input features were reduced, the best performing input combinations included HF and LF features. Feature-learnability also revealed that signals recorded from the same midline electrode can be accurately classified when evoked from bilateral nerve pairs, suggesting DCN surface activity asymmetry. Here we demonstrate a novel method for mapping the information content of signal patterns across the DCN surface and show that DCN SFs are robust across a population. Finally, we also show that the DCN is functionally asymmetrically organized, which challenges our current understanding of somatotopic symmetry across the midline at sub-cortical levels.

10.
Eur J Neurosci ; 46(12): 2859-2866, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29131436

ABSTRACT

Classically, GABAB receptors are thought to regulate neuronal excitability via G-protein-coupled inwardly rectifying potassium (GIRK) channels. Recent data, however, indicate that GABAB receptors can also activate two-pore domain potassium channels. Here, we investigate which potassium channels are coupled to GABAB receptors in rat neocortical layer 5 and hippocampal CA1 pyramidal neurons. Bath application of the non-specific GIRK channel blocker barium (200 µm) abolished outward currents evoked by GABAB receptors in CA1 pyramidal, but only partially blocked GABAB responses in layer 5 neurons. Layer 5 and CA1 pyramidal neurons also showed differential sensitivity to tertiapin-Q, a specific GIRK channel blocker. Tertiapin-Q partially blocked GABAB responses in CA1 pyramidal neurons, but was ineffective in blocking GABAB responses in neocortical layer 5 neurons. Consistent with the idea that GABAB receptors are coupled to two-pore domain potassium channels, the non-specific blockers quinidine and bupivacaine partially blocked GABAB responses in both layer 5 and CA1 neurons. Finally, we show that lowering external pH, as occurs in hypoxia, blocks the component of GABAB responses mediated by two-pore domain potassium channels in neocortical layer 5 pyramidal neurons, while at the same time revealing a GIRK channel component. These data indicate that GABAB receptors in neocortical layer 5 and hippocampal CA1 pyramidal neurons are coupled to different channels, with this coupling pH dependent on neocortical layer 5 pyramidal neurons. This pH dependency may act to maintain constant levels of GABAB inhibition during hypoxia by enhancing GIRK channel function following a reduction in two-pore domain potassium channel activity.


Subject(s)
CA1 Region, Hippocampal/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Neocortex/metabolism , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Animals , Bee Venoms/pharmacology , Bupivacaine/pharmacology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Female , GABA-B Receptor Antagonists/pharmacology , Male , Neocortex/cytology , Neocortex/physiology , Potassium Channel Blockers/pharmacology , Pyramidal Cells/physiology , Quinidine/pharmacology , Rats , Rats, Wistar
11.
Elife ; 62017 10 23.
Article in English | MEDLINE | ID: mdl-29058675

ABSTRACT

Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.


Subject(s)
Action Potentials , Dendrites/enzymology , Dendrites/physiology , Excitatory Postsynaptic Potentials , Neuronal Plasticity , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Spine/cytology , Animals , Female , Male , Rats, Wistar
12.
J Physiol ; 595(13): 4507-4524, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28333372

ABSTRACT

KEY POINTS: The brainstem dorsal column nuclei (DCN) process sensory information arising from the body before it reaches the brain and becomes conscious. Despite significant investigations into sensory coding in peripheral nerves and the somatosensory cortex, little is known about how sensory information arising from the periphery is represented in the DCN. Following stimulation of hind-limb nerves, we mapped and characterised the evoked electrical signatures across the DCN surface. We show that evoked responses recorded from the DCN surface are highly reproducible and are unique to nerves carrying specific sensory information. ABSTRACT: The brainstem dorsal column nuclei (DCN) play a role in early processing of somatosensory information arising from a variety of functionally distinct peripheral structures, before being transmitted to the cortex via the thalamus. To improve our understanding of how sensory information is represented by the DCN, we characterised and mapped low- (<200 Hz) and high-frequency (550-3300 Hz) components of nerve-evoked DCN surface potentials. DCN surface potentials were evoked by electrical stimulation of the left and right nerves innervating cutaneous structures (sural nerve), or a mix of cutaneous and deep structures (peroneal nerve), in 8-week-old urethane-anaesthetised male Wistar rats. Peroneal nerve-evoked DCN responses demonstrated low-frequency events with significantly longer durations, more high-frequency events and larger magnitudes compared to responses evoked from sural nerve stimulation. Hotspots of low- and high-frequency DCN activity were found ipsilateral to stimulated nerves but were not symmetrically organised. In conclusion, we find that sensory inputs from peripheral nerves evoke unique and characteristic DCN activity patterns that are highly reproducible both within and across animals.


Subject(s)
Brain Mapping , Brain Stem/physiology , Evoked Potentials, Somatosensory , Animals , Male , Rats , Rats, Wistar , Sciatic Nerve/physiology
13.
Front Cell Neurosci ; 10: 206, 2016.
Article in English | MEDLINE | ID: mdl-27630543

ABSTRACT

Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have also been shown to be present in the dendrites of some neurons where they can regulate the magnitude and duration of dendritic spikes. Here, we investigate the impact of modulating the activation of BK channels at different locations on the cellular excitability of cortical layer 5 pyramidal neurons. We find that while somatic BK channels help to repolarize APs at the soma and mediate the fast after-hyperpolarization, dendritic BK channels are responsible for repolarization of dendritic calcium spikes and thereby regulate somatic AP burst firing. We found no evidence for a role of dendritic BK channels in the regulation of backpropagating AP amplitude or duration. These experiments highlight the diverse roles of BK channels in regulating neuronal excitability and indicate that their functional impact depends on their subcellular location.

14.
J Neurophysiol ; 115(3): 1740-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26936985

ABSTRACT

Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive.


Subject(s)
Action Potentials , Cerebral Cortex/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Pyramidal Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Pyramidal Cells/physiology , Rats , Rats, Wistar , Synapses/metabolism , Synapses/physiology
15.
Nat Neurosci ; 18(12): 1713-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26605882

ABSTRACT

Understanding how individual neurons integrate the thousands of synaptic inputs they receive is critical to understanding how the brain works. Modeling studies in silico and experimental work in vitro, dating back more than half a century, have revealed that neurons can perform a variety of different passive and active forms of synaptic integration on their inputs. But how are synaptic inputs integrated in the intact brain? With the development of new techniques, this question has recently received substantial attention, with new findings suggesting that many of the forms of synaptic integration observed in vitro also occur in vivo, including in awake animals. Here we review six decades of progress, which collectively highlights the complex ways that single neurons integrate their inputs, emphasizing the critical role of dendrites in information processing in the brain.


Subject(s)
Brain/physiology , Dendrites/physiology , Synapses/physiology , Action Potentials/physiology , Animals , Brain/cytology , Humans , Neurons/physiology , Time Factors
16.
Front Cell Neurosci ; 7: 231, 2013.
Article in English | MEDLINE | ID: mdl-24348330

ABSTRACT

Neurons receive thousands of synaptic inputs that are distributed in space and time. The systematic study of how neurons process these inputs requires a technique to stimulate multiple yet highly targeted points of interest along the neuron's dendritic tree. Three-dimensional multi-focal patterns produced via holographic projection combined with two-photon photolysis of caged compounds can provide for highly localized release of neurotransmitters within each diffraction-limited focus, and in this way emulate simultaneous synaptic inputs to the neuron. However, this technique so far cannot achieve time-dependent stimulation patterns due to fundamental limitations of the hologram-encoding device and other factors that affect the consistency of controlled synaptic stimulation. Here, we report an advanced technique that enables the design and application of arbitrary spatio-temporal photostimulation patterns that resemble physiological synaptic inputs. By combining holographic projection with a programmable high-speed light-switching array, we have overcome temporal limitations with holographic projection, allowing us to mimic distributed activation of synaptic inputs leading to action potential generation. Our experiments uniquely demonstrate multi-site two-photon glutamate uncaging in three dimensions with submillisecond temporal resolution. Implementing this approach opens up new prospects for studying neuronal synaptic integration in four dimensions.

17.
J Neurosci ; 33(50): 19396-405, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24336706

ABSTRACT

Small-conductance calcium-activated potassium (SK) channels play an important role in regulating neuronal excitability. While SK channels at the soma have long been known to contribute to the medium afterhyperpolarization (mAHP), recent evidence indicates they also regulate NMDA receptor activation in dendritic spines. Here we investigate the activation of SK channels in spines and dendrites of rat cortical pyramidal neurons during action potentials (APs), and compare this to SK channel activation at the soma. Using confocal calcium imaging, we demonstrate that the inhibition of SK channels with apamin results in a location-dependent increase in calcium influx into dendrites and spines during backpropagating APs (average increase, ~40%). This effect was occluded by block of R-type voltage-dependent calcium channels (VDCCs), but not by inhibition of N- or P/Q-type VDCCs, or block of calcium release from intracellular stores. During these experiments, we noticed that the calcium indicator (Oregon Green BAPTA-1) blocked the mAHP. Subsequent experiments using low concentrations of EGTA (1 mm) produced the same result, suggesting that somatic SK channels are not tightly colocalized with their calcium source. Consistent with this idea, all known subtypes of VDCCs except R-type were calcium sources for the apamin-sensitive mAHP at the soma. We conclude that SK channels in spines and dendrites of cortical pyramidal neurons regulate calcium influx during backpropagating APs in a distance-dependent manner, and are tightly coupled to R-type VDCCs. In contrast, SK channels activated by APs at the soma of these neurons are weakly coupled to a variety of VDCCs.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Dendrites/physiology , Pyramidal Cells/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Calcium Channels, R-Type/physiology , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Dendrites/drug effects , Egtazic Acid/pharmacology , Organic Chemicals/pharmacology , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Rats
18.
Nat Neurosci ; 16(6): 714-23, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644484

ABSTRACT

Although we know much about the capacity of neurons to integrate synaptic inputs in vitro, less is known about synaptic integration in vivo. Here we address this issue by investigating the integration of inputs from the two eyes in mouse primary visual cortex. We find that binocular inputs to layer 2/3 pyramidal neurons are integrated sublinearly in an amplitude-dependent manner. Sublinear integration was greatest when binocular responses were largest, as occurs at the preferred orientation and binocular disparity, and highest contrast. Using voltage-clamp experiments and modeling, we show that sublinear integration occurs postsynaptically. The extent of sublinear integration cannot be accounted for solely by nonlinear integration of excitatory inputs, even when they are activated closely in space and time, but requires balanced recruitment of inhibition. Finally, we show that sublinear binocular integration acts as a divisive form of gain control, linearizing the output of binocular neurons and enhancing orientation selectivity.


Subject(s)
Pyramidal Cells/physiology , Synapses/physiology , Vision, Binocular/physiology , Visual Cortex/physiology , Animals , Electrodes, Implanted , Female , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neural Inhibition/physiology , Neuropsychological Tests , Patch-Clamp Techniques , Vision Disparity/physiology , Vision, Monocular/physiology , Visual Cortex/cytology
19.
J Neurophysiol ; 108(10): 2810-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22956789

ABSTRACT

GABA(B) receptors play a key role in regulating neuronal excitability in the brain. Whereas the impact of somatic GABA(B) receptors on neuronal excitability has been studied in some detail, much less is known about the role of dendritic GABA(B) receptors. Here, we investigate the impact of GABA(B) receptor activation on the somato-dendritic excitability of layer 5 pyramidal neurons in the rat barrel cortex. Activation of GABA(B) receptors led to hyperpolarization and a decrease in membrane resistance that was greatest at somatic and proximal dendritic locations. These effects were occluded by low concentrations of barium (100 µM), suggesting that they are mediated by potassium channels. In contrast, activation of dendritic GABA(B) receptors decreased the width of backpropagating action potential (APs) and abolished dendritic calcium electrogenesis, indicating that dendritic GABA(B) receptors regulate excitability, primarily via inhibition of voltage-dependent calcium channels. These distinct actions of somatic and dendritic GABA(B) receptors regulated neuronal output in different ways. Activation of somatic GABA(B) receptors led to a reduction in neuronal output, primarily by increasing the AP rheobase, whereas activation of dendritic GABA(B) receptors blocked burst firing, decreasing AP output in the absence of a significant change in somatic membrane properties. Taken together, our results show that GABA(B) receptors regulate somatic and dendritic excitability of cortical pyramidal neurons via different cellular mechanisms. Somatic GABA(B) receptors activate potassium channels, leading primarily to a subtractive or shunting form of inhibition, whereas dendritic GABA(B) receptors inhibit dendritic calcium electrogenesis, leading to a reduction in bursting firing.


Subject(s)
Action Potentials , Dendrites/physiology , Pyramidal Cells/physiology , Receptors, GABA-B/metabolism , Animals , Barium/pharmacology , Calcium Channels/physiology , Dendrites/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels/physiology , Pyramidal Cells/cytology , Rats , Rats, Wistar , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology
20.
Neuron ; 75(5): 744-6, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22958816

ABSTRACT

How inhibition regulates dendritic excitability is critical to an understanding of the way neurons integrate the many thousands of synaptic inputs they receive. In this issue of Neuron, Müller et al. (2012) show that inhibition blocks the generation of weak dendritic spikes, leaving strong dendritic spikes intact.

SELECTION OF CITATIONS
SEARCH DETAIL
...