Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(2): e0304823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193697

ABSTRACT

Antibodies targeting an envelope dimer epitope (EDE) cross-neutralize Zika virus (ZIKV) and dengue virus (DENV) and have thus inspired an epitope-focused vaccine design. There are two EDE antibody subclasses (EDE1, EDE2) distinguished by their dependence on viral envelope protein N-linked glycosylation at position N153 (DENV) or N154 (ZIKV) for binding. Here, we determined how envelope glycosylation site mutations affect neutralization by EDE and other broadly neutralizing antibodies. Consistent with structural studies, mutations abolishing the N153/N154 glycosylation site increased DENV and ZIKV sensitivity to neutralization by EDE1 antibodies. Surprisingly, despite their location at predicted contact sites, these mutations also increased sensitivity to EDE2 antibodies. Moreover, despite preserving the glycosylation site motif (N-X-S/T), substituting the threonine at ZIKV envelope residue 156 with a serine resulted in loss of glycan occupancy accompanied with increased neutralization sensitivity to EDE antibodies. For DENV, the presence of a serine instead of a threonine at envelope residue 155 retained glycan occupancy, but nonetheless increased sensitivity to EDE antibodies, in some cases to a similar extent as mutation at N153, which abolishes glycosylation. Envelope glycosylation site mutations also increased ZIKV and DENV sensitivity to other non-EDE broadly neutralizing antibodies, but had limited effects on ZIKV- or DENV-specific antibodies. Thus, envelope protein glycosylation is context-dependent and modulates the potency of broadly neutralizing antibodies in a manner not predicted by existing structures. Manipulating envelope protein glycosylation could be a novel strategy for engineering vaccine antigens to elicit antibodies that broadly neutralize ZIKV and DENV.IMPORTANCEAntibodies that potently cross-neutralize Zika (ZIKV) and dengue (DENV) viruses are attractive to induce via vaccination to protect against these co-circulating flaviviruses. Structural studies have shown that viral envelope protein glycosylation is important for binding by one class of these so-called broadly neutralizing antibodies, but less is known about its effect on neutralization. Here, we investigated how envelope protein glycosylation site mutations impact the potency of broadly neutralizing antibodies against ZIKV and DENV. We found that glycan occupancy was not always predicted by an intact N-X-S/T sequence motif. Moreover, envelope protein glycosylation site mutations alter the potency of broadly neutralizing antibodies in a manner unexpected from their predicted binding mechanism as determined by existing structures. We therefore highlight the complex role and determinants of envelope protein glycosylation that should be considered in the design of vaccine antigens to elicit broadly neutralizing antibodies.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Vaccines , Zika Virus Infection , Zika Virus , Humans , Broadly Neutralizing Antibodies , Glycosylation , Antibodies, Neutralizing , Dengue Virus/genetics , Viral Envelope Proteins/chemistry , Antibodies, Viral , Epitopes/genetics , Mutation , Polysaccharides , Serine/genetics , Threonine/genetics
2.
J Virol ; 97(11): e0141423, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37943046

ABSTRACT

IMPORTANCE: The wide endemic range of mosquito-vectored flaviviruses-such as Zika virus and dengue virus serotypes 1-4-places hundreds of millions of people at risk of infection every year. Despite this, there are no widely available vaccines, and treatment of severe cases is limited to supportive care. An avenue toward development of more widely applicable vaccines and targeted therapies is the characterization of monoclonal antibodies that broadly neutralize all these viruses. Here, we measure how single amino acid mutations in viral envelope protein affect neutralizing antibodies with both broad and narrow specificities. We find that broadly neutralizing antibodies with potential as vaccine prototypes or biological therapeutics are quantifiably more difficult to escape than narrow, virus-specific neutralizing antibodies.


Subject(s)
Antibodies, Viral , Broadly Neutralizing Antibodies , Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Animals , Humans , Cross Reactions , Mutation , Vaccines , Viral Envelope , Viral Envelope Proteins/genetics , Zika Virus/genetics , Zika Virus Infection/immunology , Zika Virus Infection/therapy
3.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808848

ABSTRACT

Zika virus and dengue virus are co-circulating flaviviruses with a widespread endemic range. Eliciting broad and potent neutralizing antibodies is an attractive goal for developing a vaccine to simultaneously protect against these viruses. However, the capacity of viral mutations to confer escape from broadly neutralizing antibodies remains undescribed, due in part to limited throughput and scope of traditional approaches. Here, we use deep mutational scanning to map how all possible single amino acid mutations in Zika virus envelope protein affect neutralization by antibodies of varying breadth and potency. While all antibodies selected viral escape mutations, the mutations selected by broadly neutralizing antibodies conferred less escape relative to those selected by narrow, virus-specific antibodies. Surprisingly, even for broadly neutralizing antibodies with similar binding footprints, different single mutations led to escape, indicating distinct functional requirements for neutralization not captured by existing structures. Additionally, the antigenic effects of mutations selected by broadly neutralizing antibodies were conserved across divergent, albeit related, flaviviruses. Our approach identifies residues critical for antibody neutralization, thus comprehensively defining the as-yet-unknown functional epitopes of antibodies with clinical potential.

4.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999034

ABSTRACT

Although fetal death is now understood to be a severe outcome of congenital Zika syndrome, the role of viral genetics is still unclear. We sequenced Zika virus (ZIKV) from a rhesus macaque fetus that died after inoculation and identified a single intrahost substitution, M1404I, in the ZIKV polyprotein, located in nonstructural protein 2B (NS2B). Targeted sequencing flanking position 1404 in 9 additional macaque mothers and their fetuses identified M1404I at a subconsensus frequency in the majority (5 of 9, 56%) of animals and some of their fetuses. Despite its repeated presence in pregnant macaques, M1404I has occurred rarely in humans since 2015. Since the primary ZIKV transmission cycle is human-mosquito-human, mutations in one host must be retained in the alternate host to be perpetuated. We hypothesized that ZIKV I1404 increases viral fitness in nonpregnant macaques and pregnant mice but is less efficiently transmitted by vectors, explaining its low frequency in humans during outbreaks. By examining competitive fitness relative to that of ZIKV M1404, we observed that ZIKV I1404 produced lower viremias in nonpregnant macaques and was a weaker competitor in tissues. In pregnant wild-type mice, ZIKV I1404 increased the magnitude and rate of placental infection and conferred fetal infection, in contrast to ZIKV M1404, which was not detected in fetuses. Although infection and dissemination rates were not different, Aedes aegypti mosquitoes transmitted ZIKV I1404 more poorly than ZIKV M1404. Our data highlight the complexity of arbovirus mutation-fitness dynamics and suggest that intrahost ZIKV mutations capable of augmenting fitness in pregnant vertebrates may not necessarily spread efficiently via mosquitoes during epidemics.IMPORTANCE Although Zika virus infection of pregnant women can result in congenital Zika syndrome, the factors that cause the syndrome in some but not all infected mothers are still unclear. We identified a mutation that was present in some ZIKV genomes in experimentally inoculated pregnant rhesus macaques and their fetuses. Although we did not find an association between the presence of the mutation and fetal death, we performed additional studies with ZIKV with the mutation in nonpregnant macaques, pregnant mice, and mosquitoes. We observed that the mutation increased the ability of the virus to infect mouse fetuses but decreased its capacity to produce high levels of virus in the blood of nonpregnant macaques and to be transmitted by mosquitoes. This study shows that mutations in mosquito-borne viruses like ZIKV that increase fitness in pregnant vertebrates may not spread in outbreaks when they compromise transmission via mosquitoes and fitness in nonpregnant hosts.


Subject(s)
Mutation , Pregnancy Complications, Infectious/virology , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Chlorocebus aethiops , Disease Outbreaks , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/virology , Pregnancy , Vero Cells , Viral Nonstructural Proteins , Viremia , Zika Virus/growth & development
5.
PLoS Negl Trop Dis ; 14(6): e0008343, 2020 06.
Article in English | MEDLINE | ID: mdl-32520944

ABSTRACT

St. Louis encephalitis virus (SLEV) is a flavivirus that circulates in an enzootic cycle between birds and mosquitoes and can also infect humans to cause febrile disease and sometimes encephalitis. Although SLEV is endemic to the United States, no activity was detected in California during the years 2004 through 2014, despite continuous surveillance in mosquitoes and sentinel chickens. In 2015, SLEV-positive mosquito pools were detected in Maricopa County, Arizona, concurrent with an outbreak of human SLEV disease. SLEV-positive mosquito pools were also detected in southeastern California and Nevada in summer 2015. From 2016 to 2018, SLEV was detected in mosquito pools throughout southern and central California, Oregon, Idaho, and Texas. To understand genetic relatedness and geographic dispersal of SLEV in the western United States since 2015, we sequenced four historical genomes (3 from California and 1 from Louisiana) and 26 contemporary SLEV genomes from mosquito pools from locations across the western US. Bayesian phylogeographic approaches were then applied to map the recent spread of SLEV. Three routes of SLEV dispersal in the western United States were identified: Arizona to southern California, Arizona to Central California, and Arizona to all locations east of the Sierra Nevada mountains. Given the topography of the Western United States, these routes may have been limited by mountain ranges that influence the movement of avian reservoirs and mosquito vectors, which probably represents the primary mechanism of SLEV dispersal. Our analysis detected repeated SLEV introductions from Arizona into southern California and limited evidence of year-to-year persistence of genomes of the same ancestry. By contrast, genetic tracing suggests that all SLEV activity since 2015 in central California is the result of a single persistent SLEV introduction. The identification of natural barriers that influence SLEV dispersal enhances our understanding of arbovirus ecology in the western United States and may also support regional public health agencies in implementing more targeted vector mitigation efforts to protect their communities more effectively.


Subject(s)
Culicidae/virology , Encephalitis Virus, St. Louis/classification , Encephalitis Virus, St. Louis/genetics , Encephalitis, St. Louis/epidemiology , Encephalitis, St. Louis/virology , Mosquito Vectors/virology , Animals , Bayes Theorem , Disease Outbreaks , Genome, Viral , Humans , Phylogeny , Phylogeography , United States/epidemiology , Whole Genome Sequencing
6.
Proc Natl Acad Sci U S A ; 117(14): 7981-7989, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32209664

ABSTRACT

Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement (ADE) in vitro and extend their half-lives. Here we report on prophylactic coadministration of the Fc-modified antibodies to pregnant rhesus macaques challenged three times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission, protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/prevention & control , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Animals, Newborn , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Disease Models, Animal , Drug Therapy, Combination , Female , Fetus/immunology , Fetus/virology , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/virology , Protein Engineering , RNA, Viral/isolation & purification , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology
7.
Cell Rep ; 25(6): 1385-1394.e7, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30403995

ABSTRACT

Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.


Subject(s)
Antibodies, Monoclonal/immunology , Mutation/genetics , Zika Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Epitopes/immunology , HEK293 Cells , Humans , Macaca , Mice, Knockout , Protein Domains
8.
J Med Entomol ; 55(5): 1307-1318, 2018 08 29.
Article in English | MEDLINE | ID: mdl-29718284

ABSTRACT

Scented sugar baits deployed in California deserts detected early West Nile virus (WNV) transmission by mosquitoes, representing a potential improvement to conventional arbovirus surveillance that relies heavily on infection rates in mosquito pools. In this study, we expanded deployment of scented sugar baits into suburban Sacramento and Yolo (2015, 2016) and Riverside Counties (2016), California. The goal of the study was to determine whether scented sugar baits detect WNV and St. Louis encephalitis virus (SLEV) concurrent with mosquito infections in trapped pools in areas of high human density. Between 8 and 10% of sugar baits were WNV RNA positive in both study years across the three counties. In Riverside County, where SLEV re-emerged in 2015, 1% of sugar baits were SLEV positive in 2016. Rates of sugar bait positives were at least 100 times higher than infection rates in trapped mosquitoes in the same districts. The prevalence of sugar bait positives varied temporally and did not coincide with infections in mosquitoes collected at the same sites each week. WNV RNA positive sugar baits were detected up to 2 wk before and after concurrent surveillance detected infection in mosquito pools at the same sites. Sugar baits also detected WNV in Riverside County at locations where no WNV activity was detected in mosquito pools. Sugar baits generated between 0.8 and 1.2 WNV positives per $1,000 and can be more economical than carbon dioxide baited traps that produce 0.8 positives per $1,000. These results indicate that the sugar bait approach enhances conventional arbovirus surveillance in mosquitoes in suburban California.


Subject(s)
Culicidae/virology , Encephalitis Virus, St. Louis/isolation & purification , Mosquito Control/economics , Mosquito Vectors/virology , Sugars , West Nile virus/isolation & purification , Animals , California , Female , Odorants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...