Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(2): e10899, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304263

ABSTRACT

Red sensitivity is the exception rather than the norm in most animal groups. Among species with red sensitivity, there is substantial variation in the peak wavelength sensitivity (λmax) of the long wavelength sensitive (LWS) photoreceptor. It is unclear whether this variation can be explained by visual tuning to the light environment or to visual tasks such as signalling or foraging. Here, we examine long wavelength sensitivity across a broad range of taxa showing diversity in LWS photoreceptor λmax: insects, crustaceans, arachnids, amphibians, reptiles, fish, sharks and rays. We collated a list of 161 species with physiological evidence for a photoreceptor sensitive to red wavelengths (i.e. λmax ≥ 550 nm) and for each species documented abiotic and biotic factors that may be associated with peak sensitivity of the LWS photoreceptor. We found evidence supporting visual tuning to the light environment: terrestrial species had longer λmax than aquatic species, and of these, species from turbid shallow waters had longer λmax than those from clear or deep waters. Of the terrestrial species, diurnal species had longer λmax than nocturnal species, but we did not detect any differences across terrestrial habitats (closed, intermediate or open). We found no association with proxies for visual tasks such as having red morphological features or utilising flowers or coral reefs. These results support the emerging consensus that, in general, visual systems are broadly adapted to the lighting environment and diverse visual tasks. Links between visual systems and specific visual tasks are commonly reported, but these likely vary among species and do not lead to general patterns across species.

2.
Proc Biol Sci ; 291(2015): 20232292, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38264783

ABSTRACT

Predator-prey interactions have been suggested as drivers of diversity in different lineages, and the presence of anti-predator defences in some clades is linked to higher rates of diversification. Warning signals are some of the most widespread defences in the animal world, and there is evidence of higher diversification rates in aposematic lineages. The mechanisms behind such species richness, however, are still unclear. Here, we test whether lineages that use aposematism as anti-predator defence exhibit higher levels of genetic differentiation between populations, leading to increased opportunities for divergence. We collated from the literature more than 3000 pairwise genetic differentiation values across more than 700 populations from over 60 amphibian species. We find evidence that over short geographical distances, populations of species of aposematic lineages exhibit greater genetic divergence relative to species that are not aposematic. Our results support a scenario where the use of warning signals could restrict gene flow, and suggest that anti-predator defences could impact divergence between populations and potentially have effects at a macro-evolutionary scale.


Subject(s)
Anura , Biological Mimicry , Animals , Genetic Drift , Biological Evolution , Gene Flow
3.
Mol Phylogenet Evol ; 190: 107963, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967640

ABSTRACT

The increasing availability of large molecular phylogenies has provided new opportunities to study the evolution of species traits, their origins and diversification, and biogeography; yet there are limited attempts to synthesise existing phylogenetic information for major insect groups. Bees (Hymenoptera: Anthophila) are a large group of insect pollinators that have a worldwide distribution, and a wide variation in ecology, morphology, and life-history traits, including sociality. For these reasons, as well as their major economic importance as pollinators, numerous molecular phylogenetic studies of family and genus-level relationships have been published, providing an opportunity to assemble a bee 'tree-of-life'. We used publicly available genetic sequence data, including phylogenomic data, reconciled to a taxonomic database, to produce a concatenated supermatrix phylogeny for the Anthophila comprising 4,586 bee species, representing 23% of species and 82% of genera. At family, subfamily, and tribe levels, support for expected relationships was robust, but between and within some genera relationships remain uncertain. Within families, sampling of genera ranged from 67 to 100% but species coverage was lower (17-41%). Our phylogeny mostly reproduces the relationships found in recent phylogenomic studies with a few exceptions. We provide a summary of these differences and the current state of molecular data available and its gaps. We discuss the advantages and limitations of this bee supermatrix phylogeny (available online at beetreeoflife.org), which may enable new insights into long standing questions about evolutionary drivers in bees, and potentially insects more generally.


Subject(s)
Hymenoptera , Life History Traits , Humans , Bees/genetics , Animals , Phylogeny , Hymenoptera/genetics , Ecology
4.
Behav Ecol ; 34(5): 862-871, 2023.
Article in English | MEDLINE | ID: mdl-37744168

ABSTRACT

Previous studies on stationary prey have found mixed results for the role of a glossy appearance in predator avoidance-some have found that glossiness can act as warning coloration or improve camouflage, whereas others detected no survival benefit. An alternative untested hypothesis is that glossiness could provide protection in the form of dynamic dazzle. Fast moving animals that are glossy produce flashes of light that increase in frequency at higher speeds, which could make it harder for predators to track and accurately locate prey. We tested this hypothesis by presenting praying mantids with glossy or matte targets moving at slow and fast speed. Mantids were less likely to strike glossy targets, independently of speed. Additionally, mantids were less likely to track glossy targets and more likely to hit the target with one out of the two legs that struck rather than both raptorial legs, but only when targets were moving fast. These results support the hypothesis that a glossy appearance may have a function as an antipredator strategy by reducing the ability of predators to track and accurately target fast moving prey.

5.
Ecol Evol ; 13(7): e10293, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37435020

ABSTRACT

Dynamic colour change is widespread in ectothermic animals, but has primarily been studied in the context of background matching. For most species, we lack quantitative data on the extent of colour change across different contexts. It is also unclear whether and how colour change varies across body regions, and how overall sexual dichromatism relates to the extent of individual colour change. In this study, we obtained reflectance measures in response to different stimuli for males and females of six species of agamid lizards (Agamidae, sister family to Chameleonidae) comprising three closely related species pairs. We computed the colour volume in a lizard-vision colour space occupied by males and females of each species and estimated overall sexual dichromatism based on the area of non-overlapping male and female colour volumes. As expected, males had larger colour volumes than females, but the extent of colour change in males differed between species and between body regions. Notably, species that were most sexually dichromatic were not necessarily those in which males showed the greatest individual colour change. Our results indicate that the extent of colour change is independent of the degree of sexual dichromatism and demonstrate that colour change on different body regions can vary substantially even between pairs of closely related species.

6.
iScience ; 25(12): 105674, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36536676

ABSTRACT

During low tides, intertidal animals can be exposed to extreme temperatures that can exceed the animals' thermal limits. Reflectance of solar radiation could be critical to prevent overheating for animals exposed to the sun; however, most studies ignore near-infrared (NIR) wavelengths that comprise approximately half of solar energy. Here, we conduct a phylogenetically controlled analysis to test whether the reflectivity of intertidal gastropod species is associated with solar exposure. Gastropods from exposed microhabitats had greater shell total reflectivity than those from sheltered microhabitats. Dry shells of gastropods from exposed microhabitats had higher NIR reflectivity even after controlling for UV-visible reflectivity, supporting selection for thermal benefits independent of visual benefits. Using thermal imaging, we also demonstrated that gastropods with high shell reflectivity had lower heating rate in natural conditions than those with low shell reflectivity. Together, these studies show that reflectivity can play a crucial role in thermoregulation in extreme environments.

7.
Integr Org Biol ; 4(1): obac036, 2022.
Article in English | MEDLINE | ID: mdl-36110288

ABSTRACT

Passive thermoregulation is an important strategy to prevent overheating in thermally challenging environments. Can the diversity of optical properties found in Christmas beetles (Rutelinae) be an advantage to keep cool? We measured changes in temperature of the elytra of 26 species of Christmas beetles, exclusively due to direct radiation from a solar simulator in visible (VIS: 400-700 nm) and near infrared (NIR: 700-1700 nm) wavebands. Then, we evaluated if the optical properties of elytra could predict their steady state temperature and heating rates, while controlling for size. We found that higher absorptivity increases the heating rate and final steady state of the beetle elytra in a biologically significant range (3 to 5°C). There was substantial variation in the absorptivity of Christmas beetle elytra; and this variation was achieved by different combinations of reflectivity and transmissivity in both VIS and NIR. Size was an important factor predicting the change in temperature of the elytra after 5 min (steady state) but not maximum heating rate. Lastly, we show that the presence of the elytra covering the body of the beetle can reduce heating of the body itself. We propose that beetle elytra can act as a semi-insulating layer to enable passive thermoregulation through high reflectivity of elytra, resulting in low absorptivity of solar radiation. Alternatively, if beetle elytra absorb a high proportion of solar radiation, they may reduce heat transfer from the elytra to the body through behavioral or physiological mechanisms.


La termorregulación pasiva es una estrategia para prevenir el calentamiento excesivo en ambientes con altas temperaturas. ¿Será posible que la diversidad en las propiedades ópticas de los élitros, en los escarabajos de Navidad (Rutelinae), sean una ventaja para evitar que su cuerpo se caliente excesivamente? En este trabajo medimos los cambios de temperatura en los élitros de 26 especies de escarabajos de Navidad, expuestos a radiación en el espectro visible (400­700 nm) e infrarrojo cercano (700­1700 nm), siendo ambas regiones del espectro producidas por un simulador solar. Luego, evaluamos si las propiedades ópticas de los élitros pueden predecir su temperatura final y tasa de calentamiento, controlando por la variable de tamaño. Encontramos que una mayor absorción de luz aumenta las tasas de calentamiento y temperatura final de los escarabajos en un rango significativo a nivel biológico. A su vez, esta absorción varía considerablemente entre especies ya que los élitros estudiados poseen diferentes combinaciones de reflectividad y transmisividad en el visible e infrarrojo cercano. El tamaño fue un predictor importante del cambio en la temperatura final de los élitros (°C después de 5 minutos), pero no en la tasa máxima de calentamiento (°C por segundo). Finalmente, demostramos que los élitros contribuyen a reducir la temperatura corporal cuando se cierran cubriendo la parte dorsal del escarabajo. Proponemos que los élitros altamente reflectivos pueden actuar como una capa semi-aislante, que contribuye a la termorregulación pasiva disminuyendo la absorción de luz. Por otro lado, los escarabajos cuyos élitros absorben una gran proporción de la radiación solar, podrían implementar mecanismos fisiológicos o comportamentales adicionales para reducir la transferencia de calor desde los élitros al cuerpo.

8.
J Evol Biol ; 35(11): 1455-1464, 2022 11.
Article in English | MEDLINE | ID: mdl-36129907

ABSTRACT

Many organisms use conspicuous colour patterns to advertise their toxicity or unpalatability, a strategy known as aposematism. Despite the recognized benefits of this anti-predator tactic, not all chemically defended species exhibit warning coloration. Here, we use a comparative approach to investigate which factors predict the evolution of conspicuousness in frogs, a group in which conspicuous coloration and toxicity have evolved multiple times. We extracted colour information from dorsal and ventral photos of 594 frog species for which chemical defence information was available. Our results show that chemically defended and diurnal species have higher internal chromatic contrast, both ventrally and dorsally, than chemically undefended and/or nocturnal species. Among species that are chemically defended, conspicuous coloration is more likely to occur if species are diurnal. Our results also suggest that the evolution of conspicuous colour is more likely to occur in chemically defended prey with smaller body size. We discuss potential explanations for this association and suggest that prey profitability (related to body size) could be an important force driving the macroevolution of warning signals.


Subject(s)
Biological Evolution , Biological Mimicry , Animals , Anura
9.
Sci Adv ; 8(19): eabn2415, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544573

ABSTRACT

Conspicuous social and sexual signals are predicted to experience pronounced character release when natural selection via predation is relaxed. However, we have few good examples of this phenomenon in the wild and none in species with dynamic color change. Here, we show that Jackson's chameleons inadvertently introduced from Kenya to Hawaii (Oahu), where there are no coevolved, native lizard predators, experienced pronounced character release of color signals. Hawaiian chameleons displayed more conspicuous social color signals than Kenyan chameleons during male contests and courtship, were less cryptic in response to bird and snake predators, and showed greater change between display and antipredator color states. Hawaiian chameleon display colors were also more conspicuous in their local than ancestral habitats, consistent with local adaptation of social signals. These results demonstrate that relaxed predation pressure can result in character release of dynamic social signals in introduced species experiencing strong sexual selection.

10.
Sci Rep ; 12(1): 982, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046431

ABSTRACT

The sensitivity of animal photoreceptors to different wavelengths of light strongly influence the perceived visual contrast of objects in the environment. Outside of the human visual wavelength range, ultraviolet sensitivity in many species provides important and behaviourally relevant visual contrast between objects. However, at the opposite end of the spectrum, the potential advantage of red sensitivity remains unclear. We investigated the potential benefit of long wavelength sensitivity by modelling the visual contrast of a wide range of jewel beetle colours against flowers and leaves of their host plants to hypothetical insect visual systems. We find that the presence of a long wavelength sensitive photoreceptor increases estimated colour contrast, particularly of beetles against leaves. Moreover, under our model parameters, a trichromatic visual system with ultraviolet (λmax = 355 nm), short (λmax = 445 nm) and long (λmax = 600 nm) wavelength photoreceptors performed as well as a tetrachromatic visual system, which had an additional medium wavelength photoreceptor (λmax = 530 nm). When we varied λmax for the long wavelength sensitive receptor in a tetrachromatic system, contrast values between beetles, flowers and leaves were all enhanced with increasing λmax from 580 nm to at least 640 nm. These results suggest a potential advantage of red sensitivity in visual discrimination of insect colours against vegetation and highlight the potential adaptive value of long wavelength sensitivity in insects.


Subject(s)
Coleoptera/physiology , Color Perception/physiology , Models, Biological , Photoreceptor Cells, Invertebrate/physiology , Animals , Ecosystem , Herbivory , Pigmentation , Victoria
11.
J Exp Biol ; 224(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34494652

ABSTRACT

Adaptations to control heat transfer through the integument are a key component of temperature regulation in animals. However, there remain significant gaps in our understanding of how different optical and morphological properties of the integument affect heating rates. To address these gaps, we examined the effect of reflectivity in both ultraviolet-visible and near-infrared wavelengths, surface rugosity (roughness), effective area (area subjected to illumination) and cuticle thickness on radiative heat gain in jewel beetles (Buprestidae). We measured heating rate using a solar simulator to mimic natural sunlight, a thermal chamber to control the effects of conduction and convection, and optical filters to isolate different wavelengths. We found that effective area and reflectivity predicted heating rate. The thermal effect of reflectivity was driven by variation in near-infrared rather than ultraviolet-visible reflectivity. By contrast, cuticle thickness and surface rugosity had no detectable effect. Our results provide empirical evidence that near-infrared reflectivity has an important effect on radiative heat gain. Modulating reflectance of near-infrared wavelengths of light may be a more widespread adaptation to control heat gain than previously appreciated.


Subject(s)
Coleoptera , Physiological Phenomena , Animals , Heating , Hot Temperature , Sunlight
12.
Ecol Lett ; 24(10): 2207-2218, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34350679

ABSTRACT

Carotenoids are important pigments producing integument colouration; however, their dietary availability may be limited in some environments. Many species produce yellow to red hues using a combination of carotenoids and self-synthesised pteridine pigments. A compelling hypothesis is that pteridines replace carotenoids in environments where carotenoid availability is limited. To test this hypothesis, we quantified concentrations of five carotenoid and six pteridine pigments in multiple skin colours and individuals from 27 species of agamid lizards. We show that environmental gradients predict the ratio of carotenoids to pteridines; carotenoid concentrations are lower and pteridine concentrations higher in arid environments with low vegetation productivity. Both carotenoid and pteridine pigments were present in all species, but only pteridine concentrations explained colour variation among species and there were no correlations between carotenoid and pteridine pigments with a similar hue. These results suggest that in arid environments, where carotenoids are likely limited, species may compensate by synthesising more pteridines but do not necessarily replace carotenoids with pteridines of similar hue.


Subject(s)
Carotenoids , Lizards , Animals , Humans , Pigmentation , Pteridines , Skin Pigmentation
13.
Ecol Lett ; 24(9): 1869-1879, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174001

ABSTRACT

Climatic gradients frequently predict large-scale ecogeographical patterns in animal coloration, but the underlying causes are often difficult to disentangle. We examined ecogeographical patterns of reflectance among 343 European butterfly species and isolated the role of selection for thermal benefits by comparing animal-visible and near-infrared (NIR) wavebands. NIR light accounts for ~50% of solar energy but cannot be seen by animals so functions primarily in thermal control. We found that reflectance of both dorsal and ventral surfaces shows thermally adaptive correlations with climatic factors including temperature and precipitation. This adaptive variation was more prominent in NIR than animal-visible wavebands and for body regions (thorax-abdomen and basal wings) that are most important for thermoregulation. Thermal environments also predicted the reflectance difference between dorsal and ventral surfaces, which may be due to modulation between requirements for heating and cooling. These results highlight the importance of climatic gradients in shaping the reflectance properties of butterflies at a continent-wide scale.


Subject(s)
Butterflies , Animals , Body Temperature Regulation , Sunlight , Temperature , Wings, Animal
14.
Evolution ; 75(4): 931-944, 2021 04.
Article in English | MEDLINE | ID: mdl-33559135

ABSTRACT

Sexual selection is thought to shape phylogenetic diversity by affecting speciation or extinction rates. However, the net effect of sexual selection on diversification is hard to predict because many of the hypothesized effects on speciation or extinction have opposing signs and uncertain magnitudes. Theoretical work also suggests that the net effect of sexual selection on diversification should depend strongly on ecological factors, though this prediction has seldom been tested. Here, we test whether variation in sexual selection can predict speciation and extinction rates across passerine birds (up to 5812 species, covering most genera) and whether this relationship is mediated by environmental factors. Male-biased sexual selection, and specifically sexual size dimorphism, predicted two of the three measures of speciation rates that we examined. The link we observed between sexual selection and speciation was independent of environmental variability, though species with smaller ranges had higher speciation rates. There was no association between any proxies of sexual selection and extinction rate. Our findings support the view that male-biased sexual selection, as measured by frequent predictors of male-male competition, has shaped diversification in the largest radiation of birds.


Subject(s)
Genetic Speciation , Passeriformes/genetics , Sex Characteristics , Sexual Selection , Animals , Extinction, Biological , Male , Phylogeny
15.
J Evol Biol ; 34(4): 680-694, 2021 04.
Article in English | MEDLINE | ID: mdl-33580546

ABSTRACT

The outcome of secondary contact between divergent lineages or species may be influenced by both the reproductive traits of parental species and the fitness of offspring; however, their relative contributions have rarely been evaluated, particularly in longer-lived vertebrate species. We performed pure and reciprocal laboratory crosses between Ctenophorus decresii (tawny dragon) and C. modestus (swift dragon) to examine how parental reproductive traits and ecologically relevant offspring fitness traits may explain contact zone dynamics in the wild. The two species meet in a contact zone of post-F1 hybrids with asymmetric backcrossing and predominantly C. modestus mtDNA haplotypes. We found no evidence for reduced parental fecundity or offspring fitness for F1 hybrid crosses. However, maternal reproductive strategy differed between species, irrespective of the species of their mate. Ctenophorus modestus females had higher fecundity and produced more and larger clutches with lower embryonic mortality. Parental species also influenced sex ratios and offspring traits, with C. modestus ♀ × C. decresii ♂ hybrids exhibiting higher trait values for more fitness measures (growth rate, sprint speed, bite force) than offspring from all other pairings. Together, these patterns are consistent with the prevalence of C. modestus mtDNA in the contact zone, and asymmetric backcrossing likely reflects fitness effects that manifest in the F2 generation. Our results highlight how parental species can influence multiple offspring traits in different ways, which together may combine to influence offspring fitness and shape contact zone dynamics.


Subject(s)
Genetic Fitness , Hybridization, Genetic , Lizards/physiology , Reproduction , Reproductive Isolation , Animals , Female , Male
16.
Biol Rev Camb Philos Soc ; 96(1): 289-309, 2021 02.
Article in English | MEDLINE | ID: mdl-33029910

ABSTRACT

Colour polymorphic species are model systems for examining the evolutionary processes that generate and maintain discrete phenotypic variation in natural populations. Lizards have repeatedly evolved strikingly similar polymorphic sexual signals in distantly related lineages, providing an opportunity to examine convergence and divergence in colour polymorphism, correlated traits and associated evolutionary processes. Herein, we synthesise the extensive literature on lizard colour polymorphisms in both sexes, including recent advances in understanding of the underlying biochemical, cellular and genetic mechanisms, and correlated behavioural, physiological and life-history traits. Male throat, head or ventral colour morphs generally consist of red/orange, yellow and white/blue morphs, and sometimes mixed morphs with combinations of two colours. Despite these convergent phenotypes, there is marked divergence in correlated behavioural, physiological and life-history traits. We discuss the need for coherence in morph classification, particularly in relation to 'mixed' morphs. We highlight future research directions such as the genetic basis of convergent phenotypes and the role of environmental variation in the maintenance of polymorphism. Research in this very active field promises to continue to provide novel insights with broad significance to evolutionary biologists.


Subject(s)
Lizards , Animals , Biological Evolution , Color , Female , Lizards/genetics , Male , Phenotype , Pigmentation/genetics , Polymorphism, Genetic
17.
Trends Ecol Evol ; 36(3): 187-195, 2021 03.
Article in English | MEDLINE | ID: mdl-33168152

ABSTRACT

Signals reliably convey information to a receiver. To be reliable, differences between individuals in signal properties must be consistent and easily perceived and evaluated by receivers. Iridescent objects are often striking and vivid, but their appearance can change dramatically with viewing geometry and illumination. The changeable nature of iridescent surfaces creates a paradox: how can they be reliable signals? We contend that iridescent color patches can be reliable signals only if accompanied by specific adaptations to enhance reliability, such as structures and behaviors that limit perceived hue shift or enhance and control directionality. We highlight the challenges of studying iridescence and key considerations for the evaluation of its adaptive significance.


Subject(s)
Iridescence , Lighting , Color , Humans , Reproducibility of Results
18.
Biol Rev Camb Philos Soc ; 96(2): 526-540, 2021 04.
Article in English | MEDLINE | ID: mdl-33164298

ABSTRACT

Time is a fundamental dimension of all biological events and it is often assumed that animals have the capacity to track the duration of experienced events (known as interval timing). Animals can potentially use temporal information as a cue during foraging, communication, predator avoidance, or navigation. Interval timing has been traditionally investigated in controlled laboratory conditions but its ecological relevance in natural environments remains unclear. While animals may time events in artificial and highly controlled conditions, they may not necessarily use temporal information in natural environments where they have access to other cues that may have more relevance than temporal information. Herein we critically evaluate the ecological contexts where interval timing has been suggested to provide adaptive value for animals. We further discuss attributes of interval timing that are rarely considered in controlled laboratory studies. Finally, we encourage consideration of ecological relevance when designing future interval-timing studies and propose future directions for such experiments.


Subject(s)
Cues , Environment , Animals , Time
19.
Curr Zool ; 66(5): 485-492, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33293929

ABSTRACT

Diversification in sexual signals is often taken as evidence for the importance of sexual selection in speciation. However, in order for sexual selection to generate reproductive isolation between populations, both signals and mate preferences must diverge together. Furthermore, assortative mating may result from multiple behavioral mechanisms, including female mate preferences, male mate preferences, and male-male competition; yet their relative contributions are rarely evaluated. Here, we explored the role of mate preferences and male competitive ability as potential barriers to gene flow between 2 divergent lineages of the tawny dragon lizard, Ctenophorus decresii, which differ in male throat coloration. We found stronger behavioral barriers to pairings between southern lineage males and northern lineage females than between northern males and southern females, indicating incomplete and asymmetric behavioral isolating barriers. These results were driven by both male and female mate preferences rather than lineage differences in male competitive ability. Intrasexual selection is therefore unlikely to drive the outcome of secondary contact in C. decresii, despite its widely acknowledged importance in lizards. Our results are consistent with the emerging view that although both male and female mate preferences can diverge alongside sexual signals, speciation is rarely driven by divergent sexual selection alone.

20.
Ecol Evol ; 10(5): 2310-2319, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32184983

ABSTRACT

In heterogeneous habitats, camouflage via background matching can be challenging because visual characteristics can vary dramatically across small spatial scales. Additionally, temporal variation in signaling functions of coloration can affect crypsis, especially when animals use coloration seasonally for intraspecific signaling (e.g., mate selection). We currently have a poor understanding of how wild prey optimize background matching within continuously heterogeneous habitats, and whether this is affected by requirements of intraspecific signaling across biological seasons. Here, we quantified color patterns of a wild population of shore skink (Oligosoma smithi), a variably colored lizard endemic to New Zealand, to (a) investigate whether background matching varies across a vegetation gradient; (b) assess potential signaling functions of color; and (c) to determine whether there is a trade-off between requirements for crypsis and intraspecific signaling in coloration across seasons. Although all pattern types occurred throughout the vegetation gradient, we found evidence for background matching in skinks across the vegetation gradient, where dorsal brightness and pattern complexity corresponded with the proportion of vegetation cover. There was also a significant disparity between ventral color (saturation) of juveniles and adults, and also between sexes, suggestive of sex recognition. However, there was little indication that color was condition-dependent in adults. Despite some evidence for a potential role in signaling, crypsis did not greatly differ across seasons. Our study suggests that selection favors a mix of generalist and specialist background matching strategies across continuously heterogeneous habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...