Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 30(8): e02203, 2020 12.
Article in English | MEDLINE | ID: mdl-32598524

ABSTRACT

In many savannah regions of Africa, pronounced seasonal variability in rainfall results in wildlife being restricted to floodplains and other habitats adjacent to permanent surface water in the dry season. During the wet season, rainfall fills small-scale, ephemeral water sources that allow wildlife to exploit forage and other resources far from permanent surface water. These water sources remain difficult to quantify, however, due to their small and ephemeral nature, and as a result are rarely included in quantitative studies of wildlife distribution, abundance, and movement. Our goal was to map ephemeral water in Bwabwata National Park in Namibia using two different approaches and to relate measures of ephemeral water to the abundance, distribution, and movement of two large wildlife species. We used high-resolution Google Earth and Esri World imagery to visually identify waterholes. Additionally, we used Sentinel-2 satellite imagery to map ephemeral water across the study area using the Normalized Difference Water Index. With these mapped waterhole layers and data from GPS-collared individuals of African elephant (Loxodonta africana) and African buffalo (Syncerus caffer), we evaluated the importance of ephemeral water in conditioning abundance and movement of these two species. The two approaches to mapping ephemeral water resulted in the visual identification of nearly 10,000 waterholes, and a predicted ephemeral water layer of ~76% accuracy. The inclusion of ephemeral water into models of abundance and movement resulted in improved goodness of fit relative to those without water, and water impacts on abundance and movement were among the strongest of all variables considered. The potential importance of ephemeral water in conditioning the movements and distributions of large herbivores in African savannahs has been difficult to quantify relative to vegetation drivers. Our results suggest research into ephemeral water impacts deserves more attention.


Subject(s)
Elephants , Water , Africa , Animals , Ecosystem , Seasons
3.
Conserv Biol ; 30(3): 628-38, 2016 06.
Article in English | MEDLINE | ID: mdl-26537845

ABSTRACT

Tourism and hunting both generate substantial revenues for communities and private operators in Africa, but few studies have quantitatively examined the trade-offs and synergies that may result from these two activities. We evaluated financial and in-kind benefit streams from tourism and hunting on 77 communal conservancies in Namibia from 1998 to 2013, where community-based wildlife conservation has been promoted as a land-use that complements traditional subsistence agriculture. We used data collected annually for all communal conservancies to characterize whether benefits were derived from hunting or tourism. We classified these benefits into 3 broad classes and examined how benefits flowed to stakeholders within communities under the status quo and under a simulated ban on hunting. Across all conservancies, total benefits from hunting and tourism increased at roughly the same rate, although conservancies typically started generating benefits from hunting within 3 years of formation as opposed to after 6 years for tourism. Disaggregation of data revealed that the main benefits from hunting were income for conservancy management and food in the form of meat for the community at large. The majority of tourism benefits were salaried jobs at lodges. A simulated ban on trophy hunting significantly reduced the number of conservancies that could cover their operating costs, whereas eliminating income from tourism did not have as severe an effect. Given that the benefits generated from hunting and tourism typically begin at different times in a conservancy's life-span (earlier vs. later, respectively) and flow to different segments of local communities, these 2 activities together may provide the greatest incentives for conservation on communal lands in Namibia. A singular focus on either hunting or tourism would reduce the value of wildlife as a competitive land-use option and have grave repercussions for the viability of community-based conservation efforts in Namibia, and possibly other parts of Africa.


Subject(s)
Agriculture , Conservation of Natural Resources , Animals , Animals, Wild , Motivation , Namibia
4.
J Hered ; 104(2): 172-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23341534

ABSTRACT

Population genetic structure is often used to infer population connectivity, but genetic structure may largely reflect historical rather than recent processes. We contrasted genetic structure with recent gene-flow estimates among 6 herds of African buffalo (Syncerus caffer) in the Caprivi Strip, Namibia, using 134 individuals genotyped at 10 microsatellite loci. We tested whether historical and recent gene flows were influenced by distance, potential barriers (rivers), or landscape resistance (distance from water). We also tested at what scales individuals were more related than expected by chance. Genetic structure across the Caprivi Strip was weak, indicating that historically, gene flow was strong and was not affected by distance, barriers, or landscape resistance. Our analysis of simulated data suggested that genetic structure would be unlikely to reflect human disturbances in the last 10-20 generations (75-150 years) because of slow predicted rates of genetic drift, but recent gene-flow estimates would be affected. Recent gene-flow estimates were not consistently affected by rivers or distance to water but showed that isolation by distance appears to be developing. Average relatedness estimates among individuals exceeded random expectations only within herds. We conclude that historically, African buffalo moved freely throughout the Caprivi Strip, whereas recent gene flow has been more restricted. Our findings support efforts to maintain the connectivity of buffalo herds across this region and demonstrate the utility of contrasting genetic inferences from different time scales.


Subject(s)
Buffaloes/genetics , Gene Flow , Alleles , Animals , Cattle , Evolution, Molecular , Genetics, Population , Genotype , Microsatellite Repeats , Namibia
5.
PLoS One ; 7(5): e36527, 2012.
Article in English | MEDLINE | ID: mdl-22570722

ABSTRACT

Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call "expanders". Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area.


Subject(s)
Animal Migration , Buffaloes/physiology , Tropical Climate , Animals , Ecosystem , Factor Analysis, Statistical , Female , Geography , Male , Models, Statistical , Namibia , Rivers , Seasons
6.
Conserv Biol ; 23(1): 31-42, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18798859

ABSTRACT

The monitoring of trends in the status of species or habitats is routine in developed countries, where it is funded by the state or large nongovernmental organizations and often involves large numbers of skilled amateur volunteers. Far less monitoring of natural resources takes place in developing countries, where state agencies have small budgets, there are fewer skilled professionals or amateurs, and socioeconomic conditions prevent development of a culture of volunteerism. The resulting lack of knowledge about trends in species and habitats presents a serious challenge for detecting, understanding, and reversing declines in natural resource values. International environmental agreements require signatories undertake systematic monitoring of their natural resources, but no system exists to guide the development and expansion of monitoring schemes. To help develop such a protocol, we suggest a typology of monitoring categories, defined by their degree of local participation, ranging from no local involvement with monitoring undertaken by professional researchers to an entirely local effort with monitoring undertaken by local people. We assessed the strengths and weaknesses of each monitoring category and the potential of each to be sustainable in developed or developing countries. Locally based monitoring is particularly relevant in developing countries, where it can lead to rapid decisions to solve the key threats affecting natural resources, can empower local communities to better manage their resources, and can refine sustainable-use strategies to improve local livelihoods. Nevertheless, we recognize that the accuracy and precision of the monitoring undertaken by local communities in different situations needs further study and field protocols need to be further developed to get the best from the unrealized potential of this approach. A challenge to conservation biologists is to identify and establish the monitoring system most relevant to a particular situation and to develop methods to integrate outputs from across the spectrum of monitoring schemes to produce wider indices of natural resources that capture the strengths of each.


Subject(s)
Community Participation/methods , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Research Personnel , Developing Countries , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...