Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 93(2): 221-4, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14726419

ABSTRACT

BACKGROUND AND AIMS: Border cells are released from the root tips of many plant species, and can remain viable in the rhizosphere for 1 week. Whether border cells are capable of controlled glucose exchange with their environment was investigated. METHODS: Border cells were removed from Zea mays L. root tips, and immersed in (14)C-labelled D-glucose. In one experiment, the hexose transport inhibitor, phlorizin, was used to investigate active glucose uptake from a range of glucose concentrations. In another experiment, glucose efflux from border cells was monitored over time. KEY RESULTS: Glucose uptake by the border cells increased with increasing glucose concentration from 0.2 to 20 mm. At 0.2 mm glucose, uptake was mainly active, as evidenced by the approx. 60 % inhibition with phlorizin. At 2 and 20 mm glucose, however, uptake was mainly via diffusion, as phlorizin inhibition was negligible. Glucose efflux increased with time for live border cells in both 2 and 20 mm glucose. There was no clear efflux/time pattern for heat-killed border cells. CONCLUSIONS: Border cells actively take up glucose, and also release it. Under our experimental conditions, glucose uptake and efflux were of similar order of magnitude. In the rhizosphere net glucose exchange will almost certainly depend on local soil conditions.


Subject(s)
Glucose/metabolism , Plant Roots/cytology , Biological Transport , Phlorhizin/pharmacology , Plant Roots/drug effects , Plant Roots/physiology , Zea mays/cytology , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...