Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 19(7): 5477-5485, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28165070

ABSTRACT

Foamed styrene-in-water emulsions can serve as templates for solid polystyrene foams as the pore size dpore in the solid polystyrene foam matches the bubble size dbubble of the liquid foam template. By producing monodisperse foamed emulsions with a microfluidic device it is possible to adjust the pore size, the connectivity of the pores, as well as the density of the solid polystyrene foams. The pore size can be tuned either by varying the gas pressure used to form the emulsion or by varying the chip dimension. Using three different chip dimensions we are able to produce monodisperse polystyrene foams with pore sizes ranging from 115 µm up to 588 µm. The relative density can be varied easily in a range from 0.10 to 0.30. Increasing the liquid fraction leads initially to smaller interconnections and ultimately to a mainly closed cell foam. It is practically impossible to produce a fully closed cell foam since, even at high liquid fractions, two adjacent bubbles eventually touch and form a film that will rupture during polymerization. By closely investigating the structure of the polystyrene foams we noticed an additional porosity in the pore walls which matches the water content of the styrene-in-water emulsion. During polymerization, the styrene droplets in the aqueous matrix fuse and build up a continuous but porous structure which makes up the pore walls of the macropores. This additionally porosity also leads to lower Young's and shear moduli than expected, as predicted by Gibson and Ashby's model. The relationship between relative density and moduli is in good agreement with the model.

2.
J Colloid Interface Sci ; 355(1): 150-6, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21193201

ABSTRACT

In water/oil systems, surfactants partition between the water phase and the oil phase according to their solubility in both phases. The ratio between the concentration of the surfactant in the oil phase and in the water phase at equilibrium is known as the partition or distribution coefficient (K(p)). The partition coefficient (K(p)) is an important fundamental parameter essential to understanding and controlling phenomena in water-oil-surfactant systems under both equilibrium and non-equilibrium conditions. In the present work we report on the partitioning of three different classes of nonionic surfactants in the pre-cmc regime, namely polyoxyethylene alkyl ethers (C(i)E(j)), alkyl dimethyl phosphine oxides (C(n)DMPO) and alkyl glycosides (ß-C(n)G(m)) between water and different n-alkanes. We focus on the influence of the surfactant's molecular structure (alkyl chain length, head group size and type), and oil chain length on K(p) to derive systematic structure-property relationships. Moreover, we discuss the influence of the surfactant purity on partition coefficients of technical grade alkyl glycosides and polyoxyethylene alkyl ethers, respectively.

3.
Phys Chem Chem Phys ; 13(8): 3048-58, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-20882245

ABSTRACT

For the synthesis of Pt nanoparticles we used water-in-oil droplet microemulsions as templates. The focus was on the correlation between the size of the microemulsion droplets and that of the resulting Pt particles. To study this correlation in a systematic way, all particles were synthesized at the water emulsification failure boundaries where the microemulsion droplets are spherical and where their size can easily be tuned by the amount of added water. The metallic particles were synthesized by mixing two microemulsions one of which contains the metal salt H(2)PtCl(6) and the other the reducing agent NaBH(4). The size and structure of the microemulsion droplets was studied via small-angle X-ray scattering, while the Pt particles were characterized by high-resolution transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The clear correlation between droplet and particle size was further supported by accompanying Monte Carlo simulations.


Subject(s)
Emulsions/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Borohydrides/chemistry , Kinetics , Metal Nanoparticles/ultrastructure , Monte Carlo Method , Particle Size , Scattering, Small Angle , X-Ray Diffraction
4.
Adv Colloid Interface Sci ; 155(1-2): 19-31, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20206329

ABSTRACT

The review addresses the effect of geometrical confinement on the structure formation of colloidal dispersions like particle suspensions, (non)micellar surfactant solutions, polyelectrolyte solutions and mixed dispersions. The dispersions are entrapped either between two fluid interfaces (foam film) in a Thin Film Pressure Balance (TFPB) or between two solid interfaces in a Colloidal Probe Atomic Force Microscope (Colloidal Probe AFM) or a Surface Force Apparatus (SFA). The oscillating concentration profile in front of the surface leads to an oscillating force during film thinning. It is shown that the characteristic lengths like the distance between particles, the distance between micelles, or the mesh size of the polymer network remain the same during the confining process. The influence of different parameters like ionic strength, molecular structure, and the properties of the outer surfaces on the structure formation are reported. The confinement of mixed dispersions might lead to phase separation and capillary condensation, which in turn causes a pronounced attraction between the two opposing film surfaces.

5.
Langmuir ; 26(11): 7752-60, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20218554

ABSTRACT

A thin film pressure balance was used to investigate the disjoining pressure Pi as a function of the film thickness h of surfactant-stabilized formamide foam films. Nonionic (alkylpoly(ethylene glycol)s) and cationic surfactant (alkyltrimethylammonium bromides (C(n)TAB) with n = 14 and 16) solutions were studied in the absence and presence of electrolyte. The resulting Pi-h curves were fitted with the DLVO theory from which we extracted surface charge densities q(0) and surface potentials Psi(0). Investigating formamide foam films is of interest for studying the electrostatic component of the stabilizing forces in foam films. We know that the aqueous foam films are stabilized via electrostatic forces. In this case the self-dissociation of water contributes to the charges in the foam film. As formamide has a dissociation constant which is about 2 orders of magnitude lower than that of water, the number of charges in the solution due to self-dissociation is much smaller, which, in turn, should lead to lower electrostatic forces. Indeed, we found that formamide solutions of nonionic surfactants did not form stable foam films at concentrations below the critical micelle concentration. Regarding the cationic surfactants, the main difference between the formamide and the aqueous foam films is the fact that the concentration of ionic surfactants to form stable foam films is about 2 orders of magnitude higher compared to water. Consequently, the screening length for the electrostatic interaction and thus the film thickness are much smaller compared to films formed by the respective aqueous solutions.

6.
Adv Colloid Interface Sci ; 155(1-2): 32-49, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20167304

ABSTRACT

Addition of surfactants to aqueous solutions of polyelectrolytes carrying an opposite charge causes the spontaneous formation of complexes in the bulk phase in certain concentration ranges. Under some conditions, compact monodisperse multichain complexes are obtained in the bulk. The size of these complexes depends on the mixing procedure and it can be varied in a controlled way from nanometers up to micrometers. The complexes exhibit microstructures analogous to those of the precipitates formed at higher concentrations. In other cases, however, the bulk complexes are large, soft and polydisperse. In most cases, the dispersions are only kinetically stable and exhibit pronounced non-equilibrium features. Association at air-water interfaces readily occurs, even at very small concentrations. When the surfactant concentration is small, the surface complexes are usually made of a surfactant monolayer to which the polymer binds and adsorbs in a flat-like configuration. However, under some conditions, thicker layers can be found, with bulk complexes sticking to the surface. The association at solid-water interfaces is more complex and depends on the specific interactions between surfactants, polymers and the surface. However, the behaviour can be understood if distinctions between hydrophilic surfaces and hydrophobic surfaces are made. Note that the behaviour at air-water interfaces is closer to that of hydrophobic than that of hydrophilic solid surfaces. The relation between bulk and surface complexation will be discussed in this review. The emphasis will be given to the results obtained by the teams of the EC-funded Marie Curie RTN "SOCON".

7.
Adv Colloid Interface Sci ; 155(1-2): 5-18, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20080225

ABSTRACT

Mixtures of the two non-ionic surfactants hexaoxyethylene dodecyl ether (C(12)E(6)) and n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were studied with regard to surface properties, bulk properties, foam films, and foams. The reason for studying a mixture of an ethylene oxide (C(i)E(j)) and a sugar (C(n)G(m)) based surfactant is that despite being non-ionic, these two surfactants behave quite differently. Firstly, the physico-chemical properties of aqueous solutions of C(n)G(m) surfactants are less temperature-sensitive than those of C(i)E(j) solutions. Secondly, the surface charge density q(0) of foam films stabilized by C(n)G(m) surfactants is pH insensitive down to the so-called isoelectric point, while that of foam films stabilized by C(i)E(j) surfactants changes linearly with the pH. The third difference is related to interaction forces between solid surfaces. Under equilibrium conditions very high forces are needed to expel beta-C(12)G(2) from between thiolated gold surfaces, while for C(12)E(6) low loads are sufficient. Fourthly, the adsorption of C(12)E(6) and beta-C(12)G(2) on hydrophilic silica and titania, respectively, is inverted. While the surface excess of C(12)E(6) is large on silica and negligible on titania, beta-C(12)G(2) adsorbs very little on silica but has a large surface excess on titania. What is the reason for this different behaviour? Under similar conditions and for comparable head group sizes, it was found that the hydration of C(i)E(j) surfactants is one order of magnitude higher but on average much weaker than that of C(n)G(m) surfactants. Moreover, C(n)G(m) surfactants possess a rigid maltoside unit, while C(i)E(j) surfactants have a very flexible hydrophilic part. Indeed, most of the different properties mentioned above can be explained by the different hydration and the head group flexibilities. The intriguing question of how mixtures of C(i)E(j) and C(n)G(m) surfactants would behave arises organically. Thus various properties of C(12)E(6)+beta-C(12)G(2) mixtures in aqueous solution have been studied with a focus on the 1:1 mixture. The results are compared with those of the single surfactants and are discussed accordingly.

8.
J Phys Chem B ; 109(4): 1505-9, 2005 Feb 03.
Article in English | MEDLINE | ID: mdl-16851122

ABSTRACT

The dynamic and equilibrium surface tensions of C(n)TAB solutions for n = 12, 14, and 16 are studied using ring and bubble pressure tensiometry. Together with respective literature values, including neutron reflectivity and dilational surface rheology measurements, the experimental data are analyzed on the basis of two theoretical models, the Frumkin model and a modified reorientation model that takes into account an intrinsic compressibility of adsorbed surfactant molecules. It turns out that this new reorientation model, earlier applied to nonionic surfactant adsorption layers, is also applicable to ionic surfactants and superior to the Frumkin isotherm. All adsorption properties of one particular surfactant can be described by a single set of model parameters.


Subject(s)
Bromides/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Adsorption , Air , Cations/chemistry , Rheology , Surface Tension , Time Factors , Water/chemistry
9.
Langmuir ; 20(11): 4391-9, 2004 May 25.
Article in English | MEDLINE | ID: mdl-15969144

ABSTRACT

In this paper, we present a new freeze fracture method for specimen preparation for transmission electron microscopy frozen samples. We call it freeze fracture direct imaging (FFDI) because it is a hybrid of conventional freeze fracture electron microscopy (FFEM) and cryo-transmission electron microscopy (cryo-TEM), combining elements of the fracture technique with direct imaging. Like in FFEM, the sandwich method is used to prepare the sample in a protected fashion. However, after the sample is vitrified and fractured, it is not shadowed but directly imaged. The new technique avoids some experimental artifacts produced by the blotting procedure in conventional cryo-TEM. It relies, though, on occasional fractures transparent to the electrons. The advantageous features are demonstrated by a comparison between conventional cryo-TEM and FFDI micrographs of vesicular solutions. The second outstanding advantage over conventional cryo-TEM is the fact that it is now possible for the very first time to directly image oil-rich mixtures films which normally would dissolve in the cryo-medium ethane. Micrographs of pure oil and of oil-rich microemulsions clearly prove the reliability of the FFDI technique as well as its enormous potential.

10.
SELECTION OF CITATIONS
SEARCH DETAIL
...