Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Animal ; 13(1): 25-32, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29681254

ABSTRACT

Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Eating/drug effects , Resveratrol/pharmacology , Salmo salar , Weight Gain/drug effects , Animals , Antioxidants/metabolism , Aquaculture , Dietary Supplements , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Unsaturated/metabolism , Fish Oils/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Liver/metabolism , Plant Oils/metabolism , Random Allocation , Resveratrol/administration & dosage , Salmo salar/growth & development , Salmo salar/physiology
2.
Br J Nutr ; 115(11): 1919-29, 2016 06.
Article in English | MEDLINE | ID: mdl-27044510

ABSTRACT

In two long-term feeding trials in seawater, Atlantic salmon were fed EPA+DHA in graded levels, from 1·3 to 7·4 % of fatty acids (FA, 4-24 g/kg feed) combined with approximately 10 % 18 : 3n-3, at 6 and 12°C. Dietary EPA appeared to be sufficient in all diet groups, as no differences were seen in polar lipid tissue concentrations of either the brain, retina or erythrocytes. For DHA, a reduction in tissue levels was observed with low dietary supply. Effects on brain DHA at ≤1·4 % EPA+DHA of dietary FA and retina DHA at ≤2·7 % EPA+DHA of dietary FA were only observed in fish reared at 6°C, suggesting an effect of temperature, whereas tissue levels of n-6 FA increased as a response to increased dietary n-6 FA in both the brain and the retina at both temperatures. DHA levels in erythrocytes were affected by ≤2·7 % EPA+DHA at both temperatures. Therefore, DHA appears to be the limiting n-3 FA in diets where EPA and DHA are present in the ratios found in fishmeal and fish oil. To assess the physiological significance of FA differences in erythrocytes, the osmotic resistance was tested, but it did not vary between dietary groups. In conclusion, ≤2·7 % EPA+DHA of FA (≤9 g/kg feed) is not sufficient to maintain tissue DHA status in important tissues of Atlantic salmon throughout the seawater production cycle despite the presence of dietary 18 : 3n-3, and effects may be more severe at low water temperatures.


Subject(s)
Animal Feed , Brain/metabolism , Diet , Erythrocytes/metabolism , Fatty Acids, Omega-3/metabolism , Retina/metabolism , Salmo salar/metabolism , Animal Nutritional Physiological Phenomena , Animals , Aquaculture , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/administration & dosage , Seawater , Temperature
3.
Gen Comp Endocrinol ; 175(1): 118-34, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22036890

ABSTRACT

Due to global and local climate changes, farmed salmon may experience periods of elevated sea temperatures. An experiment was conducted to examine endocrine and dietary effects of high sea temperatures in adult (2.0 kg) and sexually immature Atlantic salmon, Salmo salar L. Groups of salmon were exposed to 19 °C while others were kept as controls at 14 °C. The experiment lasted for 56 days, and fish were given iso-nitrogenous diets with either a normal (335 g kg(-1); L34) or a lower lipid level (298 g kg(-1); L30). Fish held at 19 °C had a reduction in the daily feed intake, growth and feed utilization of more than 50% compared to the controls. Fish at 19 °C retained little ingested fat, and high maintenance cost lead to depleted endogenous energy body reserves. Circulating ghrelin concentration and stomach ghrelin-1 and hypothalamus growth hormone secretagogue receptor 1a-like receptor (GHSR1a-LR) mRNA levels were significantly reduced in salmon at 19 °C. An increasing number of fish kept at 19 °C had empty gastrointestinal tract after 21 days (11-67%) and 56 days (56-100%), with the highest numbers in fish fed the L34 diet. We suggest that lower circulating ghrelin during negative energy homeostasis induce down-regulation of GHSR1a-LR, neuropeptide Y, and anorexigenic factors at transcriptional levels in the hypothalamus, which over time lead to a voluntary anorexia development in adult salmon held at 19 °C. Reduction of feed intake and growth may be an important coping strategy for salmon during elevated temperatures.


Subject(s)
Anorexia/physiopathology , Ghrelin/physiology , Hot Temperature , Salmo salar/physiology , Temperature , Animals , Appetite Regulation/physiology , Eating/physiology , Energy Metabolism/physiology , Oceans and Seas , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL