Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049179

ABSTRACT

A systematic experimental study was performed to determine laser irradiation conditions for the large-area fabrication of highly regular laser-induced periodic surface structures (HR-LIPSS) on a 220 nm thick Mo film deposited on fused silica. The LIPSS were fabricated by scanning a linearly polarized, spatially Gaussian laser beam at 1030 nm wavelength and 1.4 ps pulse duration over the sample surface at 1 kHz repetition rate. Scanning electron microscope images of the produced structures were analyzed using the criterion of the dispersion of the LIPSS orientation angle (DLOA). Favorable conditions, in terms of laser fluence and beam scanning overlaps, were identified for achieving DLOA values <10∘. To gain insight into the material behavior under these irradiation conditions, a theoretical analysis of the film heating was performed, and surface plasmon polariton excitation is discussed. A possible effect of the film dewetting from the dielectric substrate is deliberated.

2.
Nanotechnology ; 31(22): 225601, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32066127

ABSTRACT

We report the results of a microscopic study of the nucleation and early growth stages of metal-catalyzed silicon nanowires in plasma-enhanced chemical vapor deposition. The nucleation of silicon nanowires is investigated as a function of different deposition conditions and metal catalysts (Sn, In and Au) using correlation of atomic force microscopy and scanning electron microscopy. This correlation method enabled us to visualize individual catalytic nanoparticles before and after the nanowire growth and identify the key parameters influencing the nanowire nucleation under plasma. The size and position of catalytic nanoparticles are found to play a significant role in the nucleation. We demonstrate that only small isolated nanoparticles in the range of 10-20 nm contribute to the nanowire growth under plasma, while larger nanoparticles are inactive because they get buried under a layer of a-Si:H before reaching supersaturation. Systematic analysis of different growth parameters reveals that the nanowire growth in plasma contradicts the vapor-liquid-solid mechanism at thermal equilibrium in many ways. The nanowire growth is much faster and proceeds even at negligible silicon solubility and bellow the eutectic temperature of the metal-silicon alloy. Based on the observations, we propose the nanowire growth under plasma to be characterized by the rapid solidification mechanism, where a crystalline silicon phase emerges from a metastable supersaturated liquid metal-silicon phase in local nonequilibrium.

3.
Beilstein J Nanotechnol ; 8: 446-451, 2017.
Article in English | MEDLINE | ID: mdl-28326235

ABSTRACT

Densely packed ZnO nanocolumns (NCs), perpendicularly oriented to the fused-silica substrates were directly grown under hydrothermal conditions at 90 °C, with a growth rate of around 0.2 µm/h. The morphology of the nanostructures was visualized and analyzed by scanning electron microscopy (SEM). The surface properties of ZnO NCs and the binding state of present elements were investigated before and after different plasma treatments, typically used in plasma-enhanced CVD solar cell deposition processes, by X-ray photoelectron spectroscopy (XPS). Photothermal deflection spectroscopy (PDS) was used to investigate the optical and photoelectrical characteristics of the ZnO NCs, and the changes induced to the absorptance by the plasma treatments. A strong impact of hydrogen plasma treatment on the free-carrier and defect absorption of ZnO NCs has been directly detected in the PDS spectra. Although oxygen plasma treatment was proven to be more efficient in the surface activation of the ZnO NC, the PDS analysis showed that the plasma treatment left the optical and photoelectrical features of the ZnO NCs intact. Thus, it was proven that the selected oxygen plasma treatment can be of great benefit for the development of thin film solar cells based on ZnO NCs.

4.
Nanoscale Res Lett ; 6(1): 145, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21711664

ABSTRACT

Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...