Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS One ; 19(4): e0301367, 2024.
Article in English | MEDLINE | ID: mdl-38625908

ABSTRACT

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/prevention & control , COVID-19 Vaccines , Georgia , SARS-CoV-2 , Vaccination , Immunity , Nursing Homes , RNA, Messenger , Immunoglobulin G , Antibodies, Viral
2.
J Infect Dis ; 229(1): 122-132, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37615368

ABSTRACT

BACKGROUND: Because COVID-19 case data do not capture most SARS-CoV-2 infections, the actual risk of severe disease and death per infection is unknown. Integrating sociodemographic data into analysis can show consequential health disparities. METHODS: Data were merged from September 2020 to November 2021 from 6 national surveillance systems in matched geographic areas and analyzed to estimate numbers of COVID-19-associated cases, emergency department visits, and deaths per 100 000 infections. Relative risks of outcomes per infection were compared by sociodemographic factors in a data set including 1490 counties from 50 states and the District of Columbia, covering 71% of the US population. RESULTS: Per infection with SARS-CoV-2, COVID-19-related morbidity and mortality were higher among non-Hispanic American Indian and Alaska Native persons, non-Hispanic Black persons, and Hispanic or Latino persons vs non-Hispanic White persons; males vs females; older people vs younger; residents in more socially vulnerable counties vs less; those in large central metro areas vs rural; and people in the South vs the Northeast. DISCUSSION: Meaningful disparities in COVID-19 morbidity and mortality per infection were associated with sociodemography and geography. Addressing these disparities could have helped prevent the loss of tens of thousands of lives.


Subject(s)
COVID-19 , Adult , Aged , Female , Humans , Male , COVID-19/epidemiology , Outcome Assessment, Health Care , United States/epidemiology
3.
MMWR Morb Mortal Wkly Rep ; 72(45): 1244-1247, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37943698

ABSTRACT

Health care personnel (HCP) are recommended to receive annual vaccination against influenza to reduce influenza-related morbidity and mortality. Every year, acute care hospitals report receipt of influenza vaccination among HCP to CDC's National Healthcare Safety Network (NHSN). This analysis used NHSN data to describe changes in influenza vaccination coverage among HCP in acute care hospitals before and during the COVID-19 pandemic. Influenza vaccination among HCP increased during the prepandemic period from 88.6% during 2017-18 to 90.7% during 2019-20. During the COVID-19 pandemic, the percentage of HCP vaccinated against influenza decreased to 85.9% in 2020-21 and 81.1% in 2022-23. Additional efforts are needed to implement evidence-based strategies to increase vaccination coverage among HCP and to identify factors associated with recent declines in influenza vaccination coverage.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Vaccination Coverage , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Seasons , COVID-19/epidemiology , COVID-19/prevention & control , Health Personnel , Vaccination , Hospitals , Delivery of Health Care
4.
MMWR Morb Mortal Wkly Rep ; 72(45): 1237-1243, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37943704

ABSTRACT

The Advisory Committee on Immunization Practices recommends that health care personnel (HCP) receive an annual influenza vaccine and that everyone aged ≥6 months stay up to date with recommended COVID-19 vaccination. Health care facilities report vaccination of HCP against influenza and COVID-19 to CDC's National Healthcare Safety Network (NHSN). During January-June 2023, NHSN defined up-to-date COVID-19 vaccination as receipt of a bivalent COVID-19 mRNA vaccine dose or completion of a primary series within the preceding 2 months. This analysis describes influenza and up-to-date COVID-19 vaccination coverage among HCP working in acute care hospitals and nursing homes during the 2022-23 influenza season (October 1, 2022-March 31, 2023). Influenza vaccination coverage was 81.0% among HCP at acute care hospitals and 47.1% among those working at nursing homes. Up-to-date COVID-19 vaccination coverage was 17.2% among HCP working at acute care hospitals and 22.8% among those working at nursing homes. There is a need to promote evidence-based strategies to improve vaccination coverage among HCP. Tailored strategies might also be useful to reach all HCP with recommended vaccines and protect them and their patients from vaccine-preventable respiratory diseases.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , Vaccination Coverage , Seasons , COVID-19/epidemiology , COVID-19/prevention & control , Health Personnel , Vaccination , Nursing Homes
5.
Emerg Infect Dis ; 29(7): 1357-1366, 2023 07.
Article in English | MEDLINE | ID: mdl-37347505

ABSTRACT

More than 7.15 million cases of domestically acquired infectious waterborne illnesses occurred in the United States in 2014, causing 120,000 hospitalizations and 6,600 deaths. We estimated disease incidence for 17 pathogens according to recreational, drinking, and nonrecreational nondrinking (NRND) water exposure routes by using previously published estimates. In 2014, a total of 5.61 million (95% credible interval [CrI] 2.97-9.00 million) illnesses were linked to recreational water, 1.13 million (95% CrI 255,000-3.54 million) to drinking water, and 407,000 (95% CrI 72,800-1.29 million) to NRND water. Recreational water exposure was responsible for 36%, drinking water for 40%, and NRND water for 24% of hospitalizations from waterborne illnesses. Most direct costs were associated with pathogens found in biofilms. Estimating disease burden by water exposure route helps direct prevention activities. For each exposure route, water management programs are needed to control biofilm-associated pathogen growth; public health programs are needed to prevent biofilm-associated diseases.


Subject(s)
Communicable Diseases , Drinking Water , Waterborne Diseases , Humans , United States/epidemiology , Communicable Diseases/epidemiology , Waterborne Diseases/epidemiology , Water Supply , Water Microbiology
6.
Clin Infect Dis ; 75(Suppl 2): S141-S146, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35748638

ABSTRACT

The US Centers for Disease Control and Prevention (CDC); state, tribal, local, and territorial health departments; other US government departments and agencies; the private sector; and international partners have engaged in a real-time public health response to the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination, variants, and vigilance were themes that arose in the second year of pandemic response in the United States. The findings included in this supplement emerged from these themes and represent some of the many collaborative efforts to improve public health knowledge and action to reduce transmission, infection, and disease severity.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2 , United States/epidemiology
7.
JMIR Res Protoc ; 10(12): e31574, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34662287

ABSTRACT

BACKGROUND: Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. OBJECTIVE: The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. METHODS: The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19-like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR-confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. RESULTS: The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. CONCLUSIONS: Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31574.

8.
J Am Med Dir Assoc ; 22(10): 2016-2020.e2, 2021 10.
Article in English | MEDLINE | ID: mdl-34508695

ABSTRACT

OBJECTIVES: In December 2020, CDC launched the Pharmacy Partnership for Long-Term Care Program to facilitate COVID-19 vaccination of residents and staff in long-term care facilities (LTCFs), including assisted living (AL) and other residential care (RC) communities. We aimed to assess vaccine uptake in these communities and identify characteristics that might impact uptake. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: AL/RC communities in the Pharmacy Partnership for Long-Term Care Program that had ≥1 on-site vaccination clinic during December 18, 2020-April 21, 2021. METHODS: We estimated uptake using the cumulative number of doses of COVID-19 vaccine administered and normalizing by the number of AL/RC community beds. We estimated the percentage of residents vaccinated in 3 states using AL census counts. We linked community vaccine administration data with county-level social vulnerability index (SVI) measures to calculate median vaccine uptake by SVI tertile. RESULTS: In AL communities, a median of 67 residents [interquartile range (IQR): 48-90] and 32 staff members (IQR: 15-60) per 100 beds received a first dose of COVID-19 vaccine at the first on-site clinic; in RC, a median of 8 residents (IQR: 5-10) and 5 staff members (IQR: 2-12) per 10 beds received a first dose. Among 3 states with available AL resident census data, median resident first-dose uptake at the first clinic was 93% (IQR: 85-108) in Connecticut, 85% in Georgia (IQR: 70-102), and 78% (IQR: 56-91) in Tennessee. Among both residents and staff, cumulative first-dose vaccine uptake increased with increasing social vulnerability related to housing type and transportation. CONCLUSIONS AND IMPLICATIONS: COVID-19 vaccination of residents and staff in LTCFs is a public health priority. On-site clinics may help to increase vaccine uptake, particularly when transportation may be a barrier. Ensuring steady access to COVID-19 vaccine in LTCFs following the conclusion of the Pharmacy Partnership is critical to maintaining high vaccination coverage among residents and staff.


Subject(s)
COVID-19 , Pharmacy , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Long-Term Care , SARS-CoV-2
9.
Clin Infect Dis ; 73(3): e792-e798, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33564862

ABSTRACT

BACKGROUND: Identifying asymptomatic individuals early through serial testing is recommended to control coronavirus disease 2019 (COVID-19) in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("nonoutbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without nonoutbreak testing was evaluated. METHODS: Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every 3 days, or daily) and isolation of asymptomatic persons compared with symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (ie, "effectiveness") through either outbreak testing alone or outbreak plus nonoutbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. RESULTS: Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding nonoutbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of nonoutbreak testing were mostly negated if accompanied by decreases in infection control practice. CONCLUSIONS: When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.


Subject(s)
COVID-19 , Disease Outbreaks/prevention & control , Health Personnel , Humans , Nursing Homes , SARS-CoV-2 , United States/epidemiology
10.
MMWR Morb Mortal Wkly Rep ; 69(46): 1730-1735, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33211679

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the vulnerability of residents and staff members in long-term care facilities (LTCFs) (1). Although skilled nursing facilities (SNFs) certified by the Centers for Medicare & Medicaid Services (CMS) have federal COVID-19 reporting requirements, national surveillance data are less readily available for other types of LTCFs, such as assisted living facilities (ALFs) and those providing similar residential care. However, many state and territorial health departments publicly report COVID-19 surveillance data across various types of LTCFs. These data were systematically retrieved from health department websites to characterize COVID-19 cases and deaths in ALF residents and staff members. Limited ALF COVID-19 data were available for 39 states, although reporting varied. By October 15, 2020, among 28,623 ALFs, 6,440 (22%) had at least one COVID-19 case among residents or staff members. Among the states with available data, the proportion of COVID-19 cases that were fatal was 21.2% for ALF residents, 0.3% for ALF staff members, and 2.5% overall for the general population of these states. To prevent the introduction and spread of SARS-CoV-2, the virus that causes COVID-19, in their facilities, ALFs should 1) identify a point of contact at the local health department; 2) educate residents, families, and staff members about COVID-19; 3) have a plan for visitor and staff member restrictions; 4) encourage social (physical) distancing and the use of masks, as appropriate; 5) implement recommended infection prevention and control practices and provide access to supplies; 6) rapidly identify and properly respond to suspected or confirmed COVID-19 cases in residents and staff members; and 7) conduct surveillance of COVID-19 cases and deaths, facility staffing, and supply information (2).


Subject(s)
Assisted Living Facilities , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Aged , Aged, 80 and over , Assisted Living Facilities/organization & administration , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Humans , Infection Control/organization & administration , Male , Pandemics/prevention & control , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , United States/epidemiology
11.
MMWR Morb Mortal Wkly Rep ; 69(38): 1364-1368, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32970661

ABSTRACT

As of September 21, 2020, the coronavirus disease 2019 (COVID-19) pandemic had resulted in 6,786,352 cases and 199,024 deaths in the United States.* Health care personnel (HCP) are essential workers at risk for exposure to patients or infectious materials (1). The impact of COVID-19 on U.S. HCP was first described using national case surveillance data in April 2020 (2). Since then, the number of reported HCP with COVID-19 has increased tenfold. This update describes demographic characteristics, underlying medical conditions, hospitalizations, and intensive care unit (ICU) admissions, stratified by vital status, among 100,570 HCP with COVID-19 reported to CDC during February 12-July 16, 2020. HCP occupation type and job setting are newly reported. HCP status was available for 571,708 (22%) of 2,633,585 cases reported to CDC. Most HCP with COVID-19 were female (79%), aged 16-44 years (57%), not hospitalized (92%), and lacked all 10 underlying medical conditions specified on the case report form† (56%). Of HCP with COVID-19, 641 died. Compared with nonfatal COVID-19 HCP cases, a higher percentage of fatal cases occurred in males (38% versus 22%), persons aged ≥65 years (44% versus 4%), non-Hispanic Asians (Asians) (20% versus 9%), non-Hispanic Blacks (Blacks) (32% versus 25%), and persons with any of the 10 underlying medical conditions specified on the case report form (92% versus 41%). From a subset of jurisdictions reporting occupation type or job setting for HCP with COVID-19, nurses were the most frequently identified single occupation type (30%), and nursing and residential care facilities were the most common job setting (67%). Ensuring access to personal protective equipment (PPE) and training, and practices such as universal use of face masks at work, wearing masks in the community, and observing social distancing remain critical strategies to protect HCP and those they serve.


Subject(s)
Coronavirus Infections/epidemiology , Health Personnel/statistics & numerical data , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance , Adolescent , Adult , Aged , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Occupational Diseases/mortality , Pandemics , Pneumonia, Viral/mortality , Risk Factors , United States/epidemiology , Young Adult
12.
Mycopathologia ; 185(5): 917-923, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32860564

ABSTRACT

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast that causes outbreaks in healthcare settings around the world. In 2016, clinicians and public health officials identified patients with C. auris bloodstream infections (BSI) in Colombian healthcare facilities. To evaluate potential risk factors and outcomes for these infections, we investigated epidemiologic and clinical features of patients with C. auris and other Candida species BSI. METHODS: We performed a retrospective case-case investigation in four Colombian acute care hospitals, defining a case as Candida spp. isolated from blood culture during January 2015-September 2016. C. auris BSI cases were compared to other Candida species BSI cases. Odds ratio (OR), estimated using logistic regression, was used to assess the association between risk factors and outcomes. RESULTS: We analyzed 90 patients with BSI, including 40 with C. auris and 50 with other Candida species. All had been admitted to the intensive care unit (ICU). No significant demographic differences existed between the two groups. The following variables were independently associated with C. auris BSI: ≥ 15 days of pre-infection ICU stay (OR: 5.62, CI: 2.04-15.5), evidence of severe sepsis (OR: 3.70, CI 1.19-11.48), and diabetes mellitus (OR 5.69, CI 1.01-31.9). CONCLUSION: Patients with C. auris BSI had longer lengths of ICU stay than those with other candidemias, suggesting that infections are acquired during hospitalization. This is different from other Candida infections, which are usually thought to result from autoinfection with host flora.


Subject(s)
Candida/isolation & purification , Candidemia/epidemiology , Candidiasis/diagnosis , Diagnosis, Differential , Adult , Antifungal Agents/therapeutic use , Candidemia/diagnosis , Candidemia/drug therapy , Candidiasis/drug therapy , Candidiasis/epidemiology , Colombia/epidemiology , Cross Infection/diagnosis , Cross Infection/epidemiology , Diabetes Complications/microbiology , Disease Outbreaks , Female , Humans , Infection Control , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Risk Factors , Sepsis/complications , Sepsis/microbiology , Treatment Outcome , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 69(15): 472-476, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32298249

ABSTRACT

On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California (1). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient's transfer to hospital B, a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional , Personnel, Hospital , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Adult , COVID-19 , California/epidemiology , Coronavirus Infections/epidemiology , Female , Hospitalization , Humans , Male , Middle Aged , Occupational Exposure , Pandemics , Personal Protective Equipment/statistics & numerical data , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/epidemiology , Risk Assessment , SARS-CoV-2
15.
MMWR Morb Mortal Wkly Rep ; 68(39): 851-854, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31581162

ABSTRACT

Infection prevention and control (IPC) in health care facilities is essential to protecting patients, visitors, and health care personnel from the spread of infectious diseases, including Ebola virus disease (Ebola). Patients with suspected Ebola are typically referred to specialized Ebola treatment units (ETUs), which have strict isolation and IPC protocols, for testing and treatment (1,2). However, in settings where contact tracing is inadequate, Ebola patients might first seek care at general health care facilities, which often have insufficient IPC capacity (3-6). Before 2014-2016, most Ebola outbreaks occurred in rural or nonurban communities, and the role of health care facilities as amplification points, while recognized, was limited (7,8). In contrast to these earlier outbreaks, the 2014-2016 West Africa Ebola outbreak occurred in densely populated urban areas where access to health care facilities was better, but contact tracing was generally inadequate (8). Patients with unrecognized Ebola who sought care at health care facilities with inadequate IPC initiated multiple chains of transmission, which amplified the epidemic to an extent not seen in previous Ebola outbreaks (3-5,7). Implementation of robust IPC practices in general health care facilities was critical to ending health care-associated transmission (8). In August 2018, when an Ebola outbreak was recognized in the Democratic Republic of the Congo (DRC), neighboring countries began preparing for possible introduction of Ebola, with a focus on IPC. Baseline IPC assessments conducted in frontline health care facilities in high-risk districts in Uganda found IPC gaps in screening, isolation, and notification. Based on findings, additional funds were provided for IPC, a training curriculum was developed, and other corrective actions were taken. Ebola preparedness efforts should include activities to ensure that frontline health care facilities have the IPC capacity to rapidly identify suspected Ebola cases and refer such patients for treatment to protect patients, staff members, and visitors.


Subject(s)
Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Health Facility Administration , Hemorrhagic Fever, Ebola/prevention & control , Infection Control/organization & administration , Democratic Republic of the Congo/epidemiology , Health Services Research , Hemorrhagic Fever, Ebola/epidemiology , Humans , Risk Assessment , Uganda
16.
Emerg Infect Dis ; 25(7)2019 07.
Article in English | MEDLINE | ID: mdl-31211679

ABSTRACT

Candida auris is an emerging multidrug-resistant fungus that causes hospital-associated outbreaks of invasive infections with high death rates. During 2015-2016, health authorities in Colombia detected an outbreak of C. auris. We conducted an investigation to characterize the epidemiology, transmission mechanisms, and reservoirs of this organism. We investigated 4 hospitals with confirmed cases of C. auris candidemia in 3 cities in Colombia. We abstracted medical records and collected swabs from contemporaneously hospitalized patients to assess for skin colonization. We identified 40 cases; median patient age was 23 years (IQR 4 months-56 years). Twelve (30%) patients were <1 year of age, and 24 (60%) were male. The 30-day mortality was 43%. Cases clustered in time and location; axilla and groin were the most commonly colonized sites. Temporal and spatial clustering of cases and skin colonization suggest person-to-person transmission of C. auris. These cases highlight the importance of adherence to infection control recommendations.


Subject(s)
Candida , Candidiasis/epidemiology , Candidiasis/microbiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Cross Infection , Disease Outbreaks , Adolescent , Adult , Aged , Aged, 80 and over , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida/drug effects , Candidemia/epidemiology , Candidemia/microbiology , Candidiasis/drug therapy , Candidiasis/history , Child , Child, Preschool , Colombia/epidemiology , Communicable Diseases, Emerging/history , Drug Resistance, Fungal , Female , History, 21st Century , Humans , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Mortality , Patient Outcome Assessment , Public Health Surveillance , Seasons , Young Adult
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180249, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31154984

ABSTRACT

Animal microbiomes play an important role in dietary adaptation, yet the extent to which microbiome changes exhibit parallel evolution is unclear. Of particular interest is an adaptation to extreme diets, such as blood, which poses special challenges in its content of proteins and lack of essential nutrients. In this study, we assessed taxonomic signatures (by 16S rRNA amplicon profiling) and potential functional signatures (inferred by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)) of haematophagy in birds and bats. Our goal was to test three alternative hypotheses: no convergence of microbiomes, convergence in taxonomy and convergence in function. We find a statistically significant effect of haematophagy in terms of microbial taxonomic convergence across the blood-feeding bats and birds, although this effect is small compared to the differences found between haematophagous and non-haematophagous species within the two host clades. We also find some evidence of convergence at the predicted functional level, although it is possible that the lack of metagenomic data and the poor representation of microbial lineages adapted to haematophagy in genome databases limit the power of this approach. The results provide a paradigm for exploring convergent microbiome evolution replicated with independent contrasts in different host lineages. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Subject(s)
Bacteria/genetics , Birds/genetics , Chiroptera/genetics , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/isolation & purification , Biological Evolution , Birds/microbiology , Birds/physiology , Chiroptera/microbiology , Chiroptera/physiology , DNA, Bacterial/genetics , Feeding Behavior , Phylogeny , RNA, Ribosomal, 16S/genetics
18.
Vet Microbiol ; 222: 69-74, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30080675

ABSTRACT

Bartonella spp. have been identified in many bat species worldwide, including the zoonotic species, Candidatus Bartonella mayotimonensis. The common vampire bat (Desmodus rotundus) preys preferentially on livestock in Latin America and is frequently infected with Bartonella spp. To determine the potential role of D. rotundus in transmitting Bartonella to livestock, common vampire bats and bat-bitten domestic ruminants from Mexico were tested for Bartonella infection by blood culture or conventional PCR. Furthermore, to explore the possibility of bite transmission during blood feeding, saliva swabs from 35 D. rotundus known to be either Bartonella bacteremic (N = 17) or blood culture negative (N = 18) were tested by PCR to detect the presence of Bartonella DNA. Twenty (17.1%) of 117 sheep and 16 (34.8%) of 46 cattle were Bartonella bacteremic by PCR testing. However, none of them were infected with Bartonella strains previously isolated from vampire bats and none of the 35 D. rotundus saliva swabs tested were PCR positive for Bartonella. All but two animals among those which were Bartonella culture and/or PCR positive, were infected with either B. bovis (cattle) or B. melophagi (sheep). Two sheep were infected by a possible new species, Candidatus Bartonella ovis, being phylogenetically closer to B. bovis than B. melophagi. This study does not support the role of D. rotundus as a reservoir of Bartonella species infecting livestock, which could be transmitted via bite and blood feeding and therefore suggest limited risk of zoonotic transmission of Bartonella from common vampire bats to humans.


Subject(s)
Bartonella Infections/veterinary , Bartonella/isolation & purification , Cattle/microbiology , Chiroptera/microbiology , DNA, Bacterial/analysis , Disease Reservoirs/veterinary , Saliva/microbiology , Sheep/microbiology , Animals , Animals, Domestic/microbiology , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/transmission , Bites and Stings/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cattle Diseases/transmission , Chiroptera/physiology , DNA, Bacterial/isolation & purification , Disease Reservoirs/microbiology , Genetic Variation , Mexico/epidemiology , Phylogeny , Polymerase Chain Reaction , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/transmission
19.
Vector Borne Zoonotic Dis ; 18(5): 258-265, 2018 05.
Article in English | MEDLINE | ID: mdl-29652641

ABSTRACT

Bartonellae are emerging blood-borne bacteria that have been recovered from a wide range of mammalian species and arthropod vectors around the world. Bats are now recognized as a potential wildlife reservoir for a diverse number of Bartonella species, including the zoonotic Candidatus B. mayotimonensis. These bat-borne Bartonella species have also been detected in the obligate ectoparasites of bats, such as blood-feeding flies, which could transmit these bacteria within bat populations. To better understand this potential for transmission, we investigated the relatedness between Bartonella detected or isolated from bat hosts sampled in Mexico and their ectoparasites. Bartonella spp. were identified in bat flies collected on two bat species, with the highest prevalence in Trichobius parasiticus and Strebla wiedemanni collected from common vampire bats (Desmodus rotundus). When comparing Bartonella sequences from a fragment of the citrate synthase gene (gltA), vector-associated strains were diverse and generally close to, but distinct from, those recovered from their bacteremic bat hosts in Mexico. Complete Bartonella sequence concordance was observed in only one bat-vector pair. The diversity of Bartonella strains in bat flies reflects the frequent host switch by bat flies, as they usually do not live permanently on their bat host. It may also suggest a possible endosymbiotic relationship with these vectors for some of the Bartonella species carried by bat flies, whereas others could have a mammalian host.


Subject(s)
Bartonella Infections/veterinary , Bartonella/isolation & purification , Chiroptera/parasitology , Diptera/microbiology , Disease Reservoirs/parasitology , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Chiroptera/microbiology , Diptera/classification , Disease Reservoirs/microbiology , Genetic Variation , Humans , Mexico/epidemiology , Phylogeny , Prevalence , Zoonoses
20.
Vector Borne Zoonotic Dis ; 18(1): 70-73, 2018 01.
Article in English | MEDLINE | ID: mdl-29232534

ABSTRACT

Blood-feeding arthropods play a major role in the transmission of several flaviviruses, which represent an important problem for human health. Currently, dengue is one of the most important arboviral emerging diseases worldwide. Furthermore, some previous studies have reported the presence of viral nucleic acids and antibodies against dengue virus (DENV) in wild animals. Our knowledge of the role played by wildlife reservoirs in the sylvatic transmission and maintenance of DENV remains limited. Our objective was to screen blood-feeding ectoparasites (bat flies) and their common vampire bat (Desmodus rotundus) hosts, for flaviviruses in Hidalgo, Mexico. We detected Flavivirus sequences in 38 pools of ectoparasites (Diptera: Streblidae, Strebla wiedemanni and Trichobius parasiticus) and 8 tissue samples of D. rotundus by RT-PCR and semi-nested PCR using FlaviPF1S, FlaviPR2bis, and FlaviPF3S primers specific for NS5, a gene highly conserved among flaviviruses. Phylogenetic inference analysis performed using the maximum likelihood algorithm implemented in PhyML showed that six sequences clustered with DENV (bootstrap value = 53.5%). Although this study supports other reports of DENV detection in bats and arthropods other than Aedes mosquitoes, the role of these ectoparasitic flies and of hematophagous bats in the epidemiology of DENV still warrants further investigation.


Subject(s)
Chiroptera/parasitology , Dengue Virus/isolation & purification , Diptera/virology , Myiasis/veterinary , Animals , Dengue Virus/genetics , Disease Reservoirs/veterinary , Mexico , Myiasis/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...