Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 587(7834): 455-459, 2020 11.
Article in English | MEDLINE | ID: mdl-33116314

ABSTRACT

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Eating/physiology , Energy Intake/physiology , Mothers , Neurons/metabolism , Reproduction/physiology , Animal Structures/cytology , Animal Structures/innervation , Animal Structures/metabolism , Animals , Appetite Regulation/physiology , Female , Hyperphagia/metabolism , Male , Neuropeptides/metabolism
3.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398343

ABSTRACT

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Subject(s)
Carbohydrate Metabolism/physiology , Drosophila melanogaster/metabolism , Eating/physiology , Intestinal Mucosa/metabolism , Sex Characteristics , Sperm Maturation/physiology , Animals , Citric Acid/metabolism , Drosophila Proteins/metabolism , Female , Gene Expression , Janus Kinases/metabolism , Male , RNA-Seq , STAT Transcription Factors/metabolism , Signal Transduction , Sugars/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...