Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Infect (Larchmt) ; 22(3): 283-291, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32633629

ABSTRACT

Background: Single-lung ventilation facilitates surgical exposure during minimally invasive cardiac surgery. However, a deeper knowledge of antibiotic distribution within a collapsed lung is necessary for effective antibiotic prophylaxis of pneumonia. Patients and Methods: The pharmacokinetics/pharmacodynamics (PK/PD) of cefuroxime were compared between the plasma and interstitial fluid (ISF) of collapsed and ventilated lungs in 10 anesthetized pigs, which were ventilated through a double-lumen endotracheal cannula. Cefuroxime (20 mg/kg) was administered in single 30-minute intravenous infusion. Samples of blood and lung microdialysate were collected until six hours post-dose. Ultrafiltration, in vivo retrodialysis, and high-performance liquid chromatography-tandem mass spectrometry were used to determine plasma and ISF concentrations of free drug. The concentrations were examined with non-compartmental analysis and compartmental modeling. Results: The concentration of free cefuroxime in ISF was lower in the non-ventilated lung than the ventilated one, evidenced by a lung penetration factor of 47% versus 63% (p < 0.05), the ratio between maximum concentrations (65%, p < 0.05), and the ratio between the areas under the concentration-time curve (78%, p = 0.12). The time needed to reach a minimum inhibitory concentration (MIC) was 30%-40% longer for a collapsed lung than for a ventilated one. In addition, a delay of 10-40 minutes was observed for lung ISF compared with plasma. The mean residence time values (ISF collapsed lung > ISF ventilated lung > plasma) could explain the absence of practically important differences in the time interval with the concentration of cefuroxime exceeding the MICs of sensitive strains (≤4 mg/L). Conclusion: The concentration of cefuroxime in the ISF of a collapsed porcine lung is lower than in a ventilated one; furthermore, its equilibration with plasma is delayed. Administration of the first cefuroxime dose earlier or at a higher rate may be warranted, as well as dose intensification of the perioperative prophylaxis of pneumonia caused by pathogens with higher MICs.


Subject(s)
Cefuroxime , Pulmonary Atelectasis , Animals , Anti-Bacterial Agents/therapeutic use , Microdialysis , Models, Animal , Pulmonary Atelectasis/drug therapy , Swine , Thoracotomy
2.
Eur J Drug Metab Pharmacokinet ; 45(1): 71-80, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31605364

ABSTRACT

BACKGROUND AND OBJECTIVES: Renal elimination of amikacin and other aminoglycosides is slowed down in sepsis-induced acute kidney injury increasing the risk of adverse effects. Since neutrophil gelatinase-associated lipocalin (NGAL) and aminoglycosides share the mechanisms for renal excretion, the predictive power of NGAL was examined towards the changes in amikacin pharmacokinetics during early endotoxemia in anesthetized Wistar rats. METHODS: Endogenous biomarkers of inflammation and acute kidney injury were assessed including NGAL in saline-injected controls and two groups of rats challenged with an intravenous injection of bacterial lipopolysaccharide (5 mg/kg)-a fluid-resuscitated group (LPS) and a fluid-resuscitated group infused intravenously with 8 µg/kg/h terlipressin (LPS-T). Sinistrin and amikacin were infused to measure glomerular filtration rate (GFR) and amikacin clearance (CLam). The investigations included blood gas analysis, chemistry and hematology tests and assessment of urine output, creatinine clearance (CLcr) and sinistrin clearance (CLsini). RESULTS: Within 3 h of injection, systemic and renal inflammatory responses were induced by lipopolysaccharide. Gene and protein expression of NGAL was increased in the kidneys and the concentrations of NGAL in the plasma (pNGAL) and urine rose 4- to 38-fold (P < 0.01). The decreases in CLam and the GFR markers (CLcr, CLsini) were proportional, reflecting the extent to which endotoxemia impaired the major elimination mechanism for the drug. Terlipressin attenuated lipopolysaccharide-induced renal dysfunction (urine output, CLcr, CLsini) and accelerated CLam. The pNGAL showed a strong association with the CLsini (rs = - 0.77, P < 0.0005). Concerning prediction of CLam, pNGAL was comparable to CLcr (mean error - 24%) and inferior to CLsini (mean error - 6.4%), while the measurement of NGAL in urine gave unsatisfactory results. CONCLUSIONS: During early endotoxemia in the rat, pNGAL has a moderate predictive ability towards CLam. Clinical studies should verify whether pNGAL can support individualized dosing of aminoglycosides to septic patients.


Subject(s)
Amikacin/pharmacokinetics , Biomarkers/blood , Lipocalin-2/metabolism , Rats, Wistar , Sepsis/metabolism , Acute Kidney Injury/blood , Amikacin/blood , Amikacin/metabolism , Animals , Cytokines , Endotoxemia/chemically induced , Glomerular Filtration Rate/physiology , Inflammation , Kidney/physiopathology , Lipocalin-2/blood , Lipocalin-2/urine , Lipopolysaccharides/pharmacology , Male , Metabolic Clearance Rate , Models, Animal , Oligosaccharides/pharmacokinetics , Predictive Value of Tests , Rats , Sepsis/drug therapy , Urine
3.
Biol Pharm Bull ; 35(10): 1703-10, 2012.
Article in English | MEDLINE | ID: mdl-23037160

ABSTRACT

A rat model of early sepsis induced by lipopolysaccharide (LPS) combined with interleukin-2 (IL-2) was developed. The primary aim was to assess the pharmacokinetics of gentamicin and sepsis-induced pathophysiological changes. Moreover, the effects on the glomerular filtration rate and tubular function were studied in septic and control rats. First, an intravenous (i.v.) bolus of LPSIL-2 (1 mg/kg-Pseudomonas aeruginosa, 15 µg/kg IL-2) or saline (controls, C) was administred. The Wistar rats were treated 30 min after LPSIL-2 with gentamicin as a 3 mg/kg i.v. bolus followed 10 min later by an i.v. 170-min infusion (GE, 0.09 mg/kg·min(-1)). The monitoring of vital functions, biochemistry and GE concentrations was performed. Creatinine clearance was 2-3 times lower and fractional urea excretion was 3-4 times less in septic rats as compared to controls(p<0.05), although urine flow was comparable. Capillary leakage caused a 55% elevation in the volume of distribution (V(c)) in the LPSIL+GE group vs. C+GE (p<0.05). The renal CL(ge) was less (2.2±0.59 vs. 3.8±0.53 mL/min·kg(-1), p<0.05), while the total CL(ge) was comparable (5.9±1.5 vs. 6.7±1.1 mL/min·kg(-1); p=0.30). In the LPSIL+GE group relative to C+GE, the half-life (t(1/2)) was 79% higher (p<0.05) and GE concentrations detected at the end of the study in the plasma and kidney were elevated 2.5-fold (p=0.09) and 2.2-fold (p<0.05), respectively. The model reproduced several consequences of early sepsis like in patients such as capillary leak, a decreased glomerular filtration rate (GFR) and the changes in pharmacokinetics of GE (increased values of V(c) and t(1/2) and a drop in renal CL(ge) proportional to that of CL(cr)). Nonrenal routes which, for the most part, compensate the reduced renal CL(ge) in septic rats deserve further study.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Disease Models, Animal , Gentamicins/pharmacokinetics , Interleukin-2/administration & dosage , Lipopolysaccharides/administration & dosage , Sepsis/metabolism , Animals , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/urine , Capillary Permeability/drug effects , Gentamicins/blood , Gentamicins/urine , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Male , Rats , Rats, Wistar , Sepsis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...