Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242039

ABSTRACT

The performance of a semiconductor quantum-electronic device ultimately depends on the quality of the semiconductor materials it is made of and on how well the device is isolated from electrostatic fluctuations caused by unavoidable surface charges and other sources of electric noise. Current technology to fabricate quantum semiconductor devices relies on surface gates which impose strong limitations on the maximum distance from the surface where the confining electrostatic potentials can be engineered. Surface gates also introduce strain fields which cause imperfections in the semiconductor crystal structure. Another way to create confining electrostatic potentials inside semiconductors is by means of light and photosensitive dopants. Light can be structured in the form of perfectly parallel sheets of high and low intensity which can penetrate deep into a semiconductor and, importantly, light does not deteriorate the quality of the semiconductor crystal. In this work, we employ these important properties of structured light to form metastable states of photo-sensitive impurities inside a GaAs/AlGaAs quantum well structure in order to create persistent periodic electrostatic potentials at large predetermined distances from the sample surface. The amplitude of the light-induced potential is controlled by gradually increasing the light fluence at the sample surface and simultaneously measuring the amplitude of Weiss commensurability oscillations in the magnetoresistivity.

2.
Nanomaterials (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903828

ABSTRACT

We present an experimental study of the coherence properties of a single heavy-hole spin qubit formed in one quantum dot of a gated GaAs/AlGaAs double quantum dot device. We use a modified spin-readout latching technique in which the second quantum dot serves both as an auxiliary element for a fast spin-dependent readout within a 200 ns time window and as a register for storing the spin-state information. To manipulate the single-spin qubit, we apply sequences of microwave bursts of various amplitudes and durations to make Rabi, Ramsey, Hahn-echo, and CPMG measurements. As a result of the qubit manipulation protocols combined with the latching spin readout, we determine and discuss the achieved qubit coherence times: T1, TRabi, T2*, and T2CPMG vs. microwave excitation amplitude, detuning, and additional relevant parameters.

3.
Sci Rep ; 12(1): 5100, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35332174

ABSTRACT

We study experimentally and theoretically the in-plane magnetic field dependence of the coupling between dots forming a vertically stacked double dot molecule. The InAsP molecule is grown epitaxially in an InP nanowire and interrogated optically at millikelvin temperatures. The strength of interdot tunneling, leading to the formation of the bonding-antibonding pair of molecular orbitals, is investigated by adjusting the sample geometry. For specific geometries, we show that the interdot coupling can be controlled in-situ using a magnetic field-mediated redistribution of interdot coupling strengths. This is an important milestone in the development of qubits required in future quantum information technologies.

4.
Rev Sci Instrum ; 91(8): 083107, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872953

ABSTRACT

Birefringence in optical fibers poses a challenge to controllably delivering polarized light. Strain-induced birefringence caused by bends in the fiber, vibrations, or a large temperature gradient can significantly alter the polarization, making it particularly difficult to deliver polarization states to low-temperature environments by fiber. In this paper, we investigate the transmission of polarized light through a fiber and discuss a method we have developed for delivering arbitrarily polarized light to the base stage of a dilution refrigerator using a standard optical fiber. We have created a compact, cryogenic optical system to identify the polarization of the delivered light, while room-temperature waveplates and a mathematical fiber model are used to fully characterize and compensate for the fiber's birefringent effects. We show here that we are able to deliver horizontal, vertical, diagonal, anti-diagonal, right circular, and left circular polarization states to milli-Kelvin temperatures, with state fidelities of greater than 0.96 being achieved in all cases. Additionally, we demonstrate that we can deliver randomly selected elliptical states through a standard fiber to the refrigerator. This opens up new opportunities for fiber-based optical experiments using polarized light, such as quantum information experiments using quantum states encoded in the polarization of single photons.

5.
Phys Rev Lett ; 120(20): 207701, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864336

ABSTRACT

We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B=0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B. Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.

6.
Proc Natl Acad Sci U S A ; 107(21): 9496-501, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20457938

ABSTRACT

Strong confinement of charges in few-electron systems such as in atoms, molecules, and quantum dots leads to a spectrum of discrete energy levels often shared by several degenerate states. Because the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum results from a change in cantilever resonance frequency and dissipation when an electron tunnels on/off a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the quantitative measurement of predicted temperature-dependent shifts of Coulomb blockade peaks. Scanning the surface shows that several quantum dots may reside on what topographically appears to be just one. Relative coupling strengths can be estimated from these images of grouped coupled dots.

7.
Phys Rev Lett ; 94(5): 056802, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783674

ABSTRACT

Single-electron charging in an individual InAs quantum dot was observed by electrostatic force measurements with an atomic-force microscope (AFM). The resonant frequency shift and the dissipated energy of an oscillating AFM cantilever were measured as a function of the tip-back electrode voltage, and the resulting spectra show distinct jumps when the tip was positioned above the dot. The observed jumps in the frequency shift, with corresponding peaks in dissipation, are attributed to a single-electron tunneling between the dot and the back electrode governed by the Coulomb blockade effect, and are consistent with a model based on the free energy of the system. The observed phenomenon may be regarded as the "force version" of the Coulomb blockade effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...