Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 14(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35202124

ABSTRACT

Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.


Subject(s)
Chromatin , Fusarium/genetics , Secondary Metabolism/genetics , DNA , Fusarium/metabolism , Gene Expression Regulation, Fungal , Histones/metabolism , Mycotoxins/metabolism , Protein Processing, Post-Translational
2.
J Nat Prod ; 84(8): 2070-2080, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34292732

ABSTRACT

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cß of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.


Subject(s)
Fungal Proteins/metabolism , Fusarium/enzymology , Peptide Synthases/metabolism , Peptides/metabolism , Amino Acid Sequence , Cluster Analysis , Computational Biology , Fungal Proteins/genetics , Fusarium/genetics , Molecular Structure , Multigene Family , Peptide Synthases/genetics , Triticum/microbiology
3.
Fungal Genet Biol ; 155: 103602, 2021 10.
Article in English | MEDLINE | ID: mdl-34214671

ABSTRACT

Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.


Subject(s)
Fusarium , Fusarium/genetics , Methyltransferases , Plant Diseases/genetics , Secondary Metabolism/genetics , Triticum/genetics
4.
Front Fungal Biol ; 2: 671796, 2021.
Article in English | MEDLINE | ID: mdl-37744112

ABSTRACT

The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.

5.
Appl Microbiol Biotechnol ; 104(22): 9801-9822, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33006690

ABSTRACT

Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled "dead" Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively growing cells and stationary cultures to identify the cognate nucleosome-free regions (NFRs). Based on these maps, different single-guide RNAs (sgRNAs) were designed and tested for their targeting and activation potential. Our results demonstrate that the system can be used to regulate several genes in parallel and, depending on the VPR-dCas9 positioning, expression can be pushed to very high levels. We have used the system to turn on individual genes within two different biosynthetic gene clusters (BGCs) which are silent under normal growth conditions. This method also opens opportunities to stepwise activate individual genes in a cluster to decipher the correlated biosynthetic pathway. Graphical abstract KEYPOINTS: • An inducible RNA-guided transcriptional regulator based on VPR-dCas9 was established in Aspergillus nidulans. • Genome-wide nucleosome positioning maps were created that facilitate sgRNA positioning. • The system was successfully applied to activate genes within two silent biosynthetic gene clusters.


Subject(s)
CRISPR-Cas Systems , Nucleosomes , Genes, Fungal , Nucleosomes/genetics , RNA, Guide, Kinetoplastida , Transcriptional Activation
6.
PLoS Genet ; 16(10): e1009125, 2020 10.
Article in English | MEDLINE | ID: mdl-33091009

ABSTRACT

Fusarium head blight is a destructive disease of grains resulting in reduced yields and contamination of grains with mycotoxins worldwide; Fusarium graminearum is its major causal agent. Chromatin structure changes play key roles in regulating mycotoxin biosynthesis in filamentous fungi. Using a split-marker approach in three F. graminearum strains INRA156, INRA349 and INRA812 (PH-1), we knocked out the gene encoding H2A.Z, a ubiquitous histone variant reported to be involved in a diverse range of biological processes in yeast, plants and animals, but rarely studied in filamentous fungi. All ΔH2A.Z mutants exhibit defects in development including radial growth, sporulation, germination and sexual reproduction, but with varying degrees of severity between them. Heterogeneity of osmotic and oxidative stress response as well as mycotoxin production was observed in ΔH2A.Z strains. Adding-back wild-type H2A.Z in INRA349ΔH2A.Z could not rescue the phenotypes. Whole genome sequencing revealed that, although H2A.Z has been removed from the genome and the deletion cassette is inserted at H2A.Z locus only, mutations occur at other loci in each mutant regardless of the genetic background. Genes affected by these mutations encode proteins involved in chromatin remodeling, such as the helicase Swr1p or an essential subunit of the histone deacetylase Rpd3S, and one protein of unknown function. These observations suggest that H2A.Z and the genes affected by such mutations are part or the same genetic interaction network. Our results underline the genetic plasticity of F. graminearum facing detrimental gene perturbation. These findings suggest that intergenic suppressions rescue deleterious phenotypes in ΔH2A.Z strains, and that H2A.Z may be essential in F. graminearum. This assumption is further supported by the fact that H2A.Z deletion failed in another Fusarium spp., i.e., the rice pathogen Fusarium fujikuroi.


Subject(s)
Fusarium/genetics , Histones/genetics , Oxidative Stress/genetics , Plant Diseases/genetics , Adenosine Triphosphatases/genetics , Disease Resistance/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Fungal , Gene Knockout Techniques , Genetic Heterogeneity , Genome, Fungal/genetics , Germination/genetics , Histone Deacetylases/genetics , Mutation/genetics , Osmotic Pressure , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Triticum/genetics , Triticum/microbiology , Virulence/genetics , Whole Genome Sequencing
7.
Sci Rep ; 10(1): 4496, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32144350

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Front Microbiol ; 10: 1759, 2019.
Article in English | MEDLINE | ID: mdl-31456754

ABSTRACT

Fungi produce a plethora of secondary metabolites (SMs) involved in cellular protection, defense, and signaling. Like other metabolic processes, transcription of SM biosynthesis genes is tightly regulated to prevent an unnecessary use of resources. Genes involved in SM biosynthesis are usually physically linked, arranged in secondary metabolite gene clusters (SMGCs). Research over the last decades has shown that chromatin structure and posttranslational modifications (PTMs) of histones represent important layers of SMGC regulation. For instance, trimethylation of histone H3 lysine 4 (H3K4me3) is a PTM typically associated with promoter regions of actively transcribed genes. Previously, we have shown that the H3K4me3-specific, JmjC domain-containing histone demethylase KdmB functions not only in repression but also in activation of secondary metabolism in Aspergillus nidulans, suggesting that KdmB has additional functions apart from histone demethylation. In this study, we identified demethylase-independent functions of KdmB in transcriptional regulation of SM gene clusters. Furthermore, we show that this activating and demethylase-independent role of the H3K4 demethylase is also conserved in the phytopathogenic fungus Fusarium graminearum. Lack of FgKdm5 resulted in significant downregulation of five of seven analyzed SMs, whereby only one SMGC depends on a functional JmjC-domain. In A. nidulans strains deficient in H3K4 methylation, i.e., cclA∆, largely phenocopied kdmB∆, while this is not the case for most of the SMs analyzed in Fusarium spp. Notably, KdmB could not rescue the demethylase function in ∆fgkdm5 but restored all demethylase-independent phenotypes.

9.
Toxins (Basel) ; 11(5)2019 05 16.
Article in English | MEDLINE | ID: mdl-31100892

ABSTRACT

Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Peptide Synthases/metabolism , Peptides/metabolism , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/growth & development , Histones/metabolism , Multigene Family , Peptide Synthases/genetics , Peptides/genetics , Triticum/microbiology
10.
Fungal Biol ; 123(3): 255-266, 2019 03.
Article in English | MEDLINE | ID: mdl-30798881

ABSTRACT

Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusariumgraminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.


Subject(s)
Cytokinins/metabolism , Fusarium/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal , Plant Growth Regulators/metabolism , Fusariosis , Hyphae/metabolism , Seedlings/microbiology , Triticum/microbiology
11.
Fungal Genet Biol ; 123: 14-24, 2019 02.
Article in English | MEDLINE | ID: mdl-30445217

ABSTRACT

The Leotiomycete Botrytis cinerea is a high-impact plant pathogen causing gray mold disease in a wide range of dicotyledonous species. Besides its efficient strategies to cause disease - either by being highly aggressive leading to rapid destruction of plant tissues or by keeping hidden for certain periods before damaging the host - the fungus is well-adapted to the changing environmental conditions due to different modes of reproduction for dispersal (macroconidia), survival (sclerotia) or adaptation (ascospores formed in the apothecia). The screening of a collection of B. cinerea mutants generated by Agrobacterium tumefaciens-mediated transformation (ATMT) has revealed a number of virulence-attenuated mutants. In the avirulent mutant PA2810 the inserted T-DNA disrupts the gene encoding a putative histone 3 lysine 36 (H3K36)-specific demethylase (BcKDM1). Targeted mutagenesis of bckdm1 confirmed the gene-phenotype linkage and indicated that BcKDM1, despite its role in virulence (critical for penetration), is required for coping with excessive light, oxidative stress and for proper expression of light-responsive genes and photomorphogenesis. Thus, bckdm1 loss-of-function mutants produce sclerotia under unfavorable conditions such as in the light. Notably, mutants expressing a truncated BcKDM1 (bckdm1991aa) showed deviating phenotypes from deletion (Δbckdm1) and demethylase-deficient (bckdm1H360A) mutants but also from the wild type, thereby indicating the importance of the C-terminal region for some developmental processes. This effect may be specific to B. cinerea as the orthologs from other Ascomycetes cannot replace BcKDM1.


Subject(s)
Botrytis/genetics , Histone Demethylases/genetics , Plant Diseases/genetics , Stress, Physiological/genetics , Botrytis/growth & development , Botrytis/pathogenicity , Gene Expression Regulation, Fungal , Morphogenesis/genetics , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Virulence/genetics
12.
Environ Microbiol ; 20(9): 3343-3362, 2018 09.
Article in English | MEDLINE | ID: mdl-30047187

ABSTRACT

Here we present the identification and characterization of the H3K4-specific histone methyltransferase Set1 and its counterpart, the Jumonji C demethylase Kdm5, in the rice pathogen Fusarium fujikuroi. While Set1 is responsible for all detectable H3K4me2/me3 in this fungus, Kdm5 antagonizes the H3K4me3 mark. Notably, deletion of both SET1 and KDM5 mainly resulted in the upregulation of genome-wide transcription, also affecting a large set of secondary metabolite (SM) key genes. Although H3K4 methylation is a hallmark of actively transcribed euchromatin, several SM gene clusters located in subtelomeric regions were affected by Set1 and Kdm5. While the regulation of many of them is likely indirect, H3K4me2 levels at gibberellic acid (GA) genes correlated with GA biosynthesis in the wild type, Δkdm5 and OE::KDM5 under inducing conditions. Whereas Δset1 showed an abolished GA3 production in axenic culture, phytohormone biosynthesis was induced in planta, so that residual amounts of GA3 were detected during rice infection. Accordingly, Δset1 exhibited a strongly attenuated, though not abolished, virulence on rice. Apart from regulating secondary metabolism, Set1 and Kdm5 function as activator and repressor of conidiation respectively. They antagonistically regulate H3K4me3 levels and expression of the major conidiation-specific transcription factor gene ABA1 in F. fujikuroi.


Subject(s)
Fusarium/metabolism , Gene Expression Regulation, Fungal , Histones/antagonists & inhibitors , Spores, Fungal/metabolism , Transcription Factors/metabolism , Fusarium/genetics , Fusarium/growth & development , Fusarium/pathogenicity , Gibberellins/metabolism , Histones/genetics , Histones/metabolism , Methylation , Multigene Family , Oryza/microbiology , Plant Diseases/microbiology , Protein Processing, Post-Translational , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity , Transcription Factors/genetics , Transcriptional Activation , Virulence
13.
Sci Rep ; 7(1): 4289, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28655890

ABSTRACT

Filamentous fungi naturally grow on solid surfaces, yet most genetic and biochemical analyses are still performed in liquid cultures. Here, we report a multiplexing platform using high-throughput photometric continuous reading that allows parallel quantification of hyphal growth and reporter gene expression directly on solid medium, thereby mimicking natural environmental conditions. Using this system, we have quantified fungal growth and expression of secondary metabolite GFP-based reporter genes in saprophytic Aspergillus and phytopathogenic Fusarium species in response to different nutrients, stress conditions and epigenetic modifiers. With this method, we provide not only novel insights into the characteristic of fungal growth but also into the metabolic and time-dependent regulation of secondary metabolite gene expression.


Subject(s)
Fungi/physiology , High-Throughput Screening Assays , Phenotype , Biomass , Culture Media , Epigenesis, Genetic/drug effects , Fungi/drug effects , Gene Expression Regulation, Fungal , Nutritional Physiological Phenomena , Plants/microbiology
14.
PLoS One ; 12(4): e0176194, 2017.
Article in English | MEDLINE | ID: mdl-28441411

ABSTRACT

The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , GATA Transcription Factors/genetics , Gene Expression Regulation, Fungal , Nitrogen/metabolism , Fungal Proteins/metabolism , Fusarium/metabolism , GATA Transcription Factors/metabolism , Genome, Fungal , Proteome , Secondary Metabolism , Transcriptome
15.
Environ Microbiol ; 18(11): 4282-4302, 2016 11.
Article in English | MEDLINE | ID: mdl-27750383

ABSTRACT

In this study, we compared the secondary metabolite profile of Fusarium fujikuroi and the histone deacetylase mutant ΔHDA1. We identified a novel peak in ΔHDA1, which was identified as beauvericin (BEA). Going in line with a 1000-fold increased BEA production, the respective non-ribosomal peptide synthetase (NRPS)-encoding gene (BEA1), as well as two adjacent genes (BEA2-BEA3), were significantly up-regulated in ΔHDA1 compared to the wild type. A special role was revealed for the ABC transporter Bea3: deletion of the encoding gene resulted in significant up-regulation of BEA1 and BEA2 and drastically elevated product yields. Furthermore, mutation of a conserved sequence motif in the promoter of BEA1 released BEA repression and resulted in elevated product levels. Candidate transcription factors (TFs) that could bind to this motif are the cluster-specific TF Bea4 as well as a homolog of the global mammalian Kruppel-like TF Yin Yang 1 (Yy1), both acting as repressors of BEA biosynthesis. In addition to Hda1, BEA biosynthesis is repressed by the activity of the H3K27 methyltransferase Kmt6. Consistently, Western blot analyses revealed a genome-wide enrichment of H3K27 acetylation (H3K27ac) in the ΔHDA1 and KMT6 knock-down mutants. Subsequent chromatin immunoprecipitation (ChIP) experiments showed elevated H3K27ac modification levels at the BEA cluster.


Subject(s)
Depsipeptides/biosynthesis , Fungal Proteins/metabolism , Fusarium/metabolism , Gene Expression Regulation, Fungal , Methyltransferases/metabolism , Acetylation , Fungal Proteins/genetics , Fusarium/enzymology , Fusarium/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Methyltransferases/genetics , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
16.
Angew Chem Int Ed Engl ; 55(30): 8748-51, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27294564

ABSTRACT

Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers.


Subject(s)
Carbon-Carbon Lyases/metabolism , Fusarium/enzymology , Carbon-Carbon Lyases/genetics , Cyclization , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes, Guaiane/biosynthesis , Sesquiterpenes, Guaiane/chemistry
17.
Environ Microbiol ; 18(11): 4037-4054, 2016 11.
Article in English | MEDLINE | ID: mdl-27348741

ABSTRACT

Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , Histones/metabolism , Methyltransferases/genetics , Oryza/microbiology , Plant Diseases/microbiology , Amino Acid Motifs , Fungal Proteins/metabolism , Fusarium/chemistry , Fusarium/growth & development , Fusarium/metabolism , Gene Expression Regulation, Fungal , Gene Knockdown Techniques , Histones/chemistry , Histones/genetics , Methyltransferases/metabolism , Multigene Family , Plant Diseases/immunology , Secondary Metabolism
18.
Front Microbiol ; 7: 2144, 2016.
Article in English | MEDLINE | ID: mdl-28119673

ABSTRACT

In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum, secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum, respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.

19.
Environ Microbiol ; 18(3): 936-56, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26662839

ABSTRACT

Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.


Subject(s)
Biological Transport/genetics , Biosynthetic Pathways/genetics , Fusaric Acid/biosynthesis , Fusarium/enzymology , Fusarium/genetics , Fusaric Acid/analogs & derivatives , Fusaric Acid/genetics , Fusarium/metabolism , Molecular Sequence Data , Multigene Family/genetics , Oryza/genetics , Polyketide Synthases/genetics , Transcription Factors/genetics
20.
Fungal Genet Biol ; 84: 26-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26382642

ABSTRACT

Secondary metabolites of filamentous fungi can be highly bioactive, ranging from antibiotic to cancerogenic properties. In this study we were able to identify a new, yet unknown metabolite produced by Fusarium fujikuroi, an ascomycetous rice pathogen. With the help of genomic engineering and high-performance liquid chromatography (HPLC) coupled to high resolution mass spectrometry (HRMS) followed by isolation and detailed structure elucidation, the new substance could be designated as an unknown bikaverin precursor, missing two methyl- and one hydroxy group, hence named oxo-pre-bikaverin. Though the bikaverin gene cluster has been extensively studied in the past, elucidation of the biosynthetic pathway remained elusive due to a negative feedback loop that regulates the genes within the cluster. To decipher the bikaverin biosynthetic pathway and to overcome these negative regulation circuits, the structural cluster genes BIK2 and BIK3 were overexpressed independently in the ΔΔBIK2/BIK3+OE::BIK1 mutant background by using strong constitutive promoters. Using the software tool MZmine 2, the metabolite profile of the generated mutants obtained by HPLC-HRMS was compared, revealing further intermediates.


Subject(s)
Fusarium/genetics , Fusarium/metabolism , Genetic Engineering/methods , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Xanthones/metabolism , Biosynthetic Pathways , Cell Proliferation/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Fungal , Hep G2 Cells , Humans , Multigene Family , Mutation , Oryza/microbiology , Xanthones/chemistry , Xanthones/isolation & purification , Xanthones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...