Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710831

ABSTRACT

Neptunium is an actinide element sourced from anthropogenic production, and, unlike naturally abundant uranium, its coordination chemistry is not well developed in all accessible oxidation states. High-valent neptunium generally requires stabilization from at least one metal-ligand multiple bond, and departing from this structural motif poses a considerable challenge. Here we report a tetrahedral molecular neptunium(V) complex ([Np5+(NPC)4][B(ArF5)4], 1-Np) (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl (N(C2H4)2); B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate). Single-crystal X-ray diffraction, solution-state spectroscopy and density functional theory studies of 1-Np and the product of its proton-coupled electron transfer (PCET) reaction, 2-Np, demonstrate the unique bonding that stabilizes this reactive ion and establishes the thermochemical and kinetic parameters of PCET in a condensed-phase transuranic complex. The isolation of this four-coordinate, neptunium(V) complex reveals a fundamental reaction pathway in transuranic chemistry.

2.
Chem Sci ; 14(42): 11708-11717, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920331

ABSTRACT

A series of Ce3+ complexes with counter cations ranging from Li to Cs are presented. Cyclic voltammetry data indicate a significant dependence of the oxidation potential on the alkali metal identity. Analysis of the single-crystal X-ray diffraction data indicates that the degree of structural distortion of the secondary coordination sphere is linearly correlated with the measured oxidation potential. Solution electronic absorption spectroscopy confirms that the structural distortion is reflected in the solution structure. Computational studies further validate this analysis, deciphering the impact of alkali metal cations on the Ce atomic orbital contributions, differences in energies of Ce-dominant molecular orbitals, energy shift of the 4f-5d electronic transitions, and degree of structural distortions. In sum, the structural impact of the alkali metal cation is demonstrated to modulate the redox and electronic properties of the Ce3+ complexes, and provides insight into the rational tuning of the Ce3+ imidophosphorane complex oxidation potential through alkali metal identity.

3.
Inorg Chem ; 62(47): 19218-19229, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37948607

ABSTRACT

The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an ∼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.

4.
Angew Chem Int Ed Engl ; 62(34): e202306580, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37327070

ABSTRACT

The study of the redox chemistry of mid-actinides (U-Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=Pt Bu(pyrr)2 ]- ; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium (1-M, 2-M, M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+ , U6+/5+ , and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.

5.
Inorg Chem ; 62(5): 2304-2316, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36668669

ABSTRACT

The development of high-valent transuranic chemistry requires robust methodologies to access and fully characterize reactive species. We have recently demonstrated that the reducing nature of imidophosphorane ligands supports the two-electron oxidation of U4+ to U6+ and established the use of this ligand to evaluate the inverse-trans-influence (ITI) in actinide metal-ligand multiple bond (MLMB) complexes. To extend this methodology and analysis to transuranic complexes, new small-scale synthetic strategies and lower-symmetry ligand derivatives are necessary to improve crystallinity and reduce crystallographic disorder. To this end, the synthesis of two new imidophosphorane ligands, [N═PtBu(pip)2]- (NPC1) and [N═PtBu(pyrr)2]- (NPC2) (pip = piperidinyl; pyrr = pyrrolidinyl), is presented, which break pseudo-C3 axes in the tetravalent complexes, U[NPC1]4 and U[NPC2]4. The reaction of these complexes with two-electron oxygen-atom-transfer reagents (N2O, trimethylamine N-oxide (TMAO) and 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (dbabhNO)) yields the U6+ mono-oxo complexes U(O)[NPC1]4 and U(O)[NPC2]4. This methodology is optimized for direct translation to transuranic elements. Of the two ligands, the NPC2 framework is most suitable for facilitating detailed bonding analysis and assessment of the ITI. Theoretical evaluation of the U-(NPC) bonding confirms a substantial difference between axially and equatorially bonded N atoms, revealing markedly more covalent U-Nax interactions. The U 6d + 5f combined contribution for U-Nax is nearly double that of U-Neq, accounting for ITI shortening and increased bond order of the axial bond. Two distinct N-atom hybridizations in the pyrrolidine/piperidine rings are noted across the complexes, with approximate sp2 and sp3 configurations describing the slightly shorter P-N"planar" and slightly longer P-N"pyramidal" bonds, respectively. In all complexes, the NPC2 ligands feature more planar N atoms than NPC1, in accordance with a higher electron-donating capacity of the former.

6.
Chemistry ; 28(64): e202202651, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36124852

ABSTRACT

Group 14 endohedral clusters containing a metal center inside usually possess a single cage topological structure, but here an unexpected single-metal-filled double-cage cluster, [Pt@Sn17 ]4- (1 a) is reported. It can be seen as a combination of the more extended Pt-filled [Pt@Sn9 ] cage and hollow [Sn9 ] cage sharing a central Sn atom, which is offset from the central position. This double-cage species represents the largest group 14 intermetalloid cluster encapsulating a single transition metal atom. DFT calculations show that the capsule-like architecture of [Sn17 ]4- , similar to that found in [Pt2 @Sn17 ]4- , is unstable if filled with a single Pt atom and collapses to the title cluster 1 a upon geometry optimization. Deviation of the central Sn atom occurs due to the vibronic coupling as a consequence of pseudo-Jahn-Teller distortion leading to the bent Cs -symmetrical structure, in contrast to the more symmetrical D2d cage previously reported in [Ni2 @Sn17 ]4- .

SELECTION OF CITATIONS
SEARCH DETAIL
...