Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35639658

ABSTRACT

Interfacing intact and metabolically active photosynthetic bacteria with abiotic electrodes requires both establishing extracellular electron transfer and immobilizing the biocatalyst on electrode surfaces. Artificial approaches for photoinduced electron harvesting through redox polymers reported in literature require the separate synthesis of artificial polymeric matrices and their subsequent combination with bacterial cells, making the development of biophotoanodes complex and less sustainable. Herein, we report a one-pot biocompatible and sustainable approach, inspired by the byssus of mussels, that provides bacterial cells adhesion on multiple surfaces under wet conditions to obtain biohybrid photoanodes with facilitated photoinduced electron harvesting. Purple bacteria were utilized as a model organism, as they are of great interest for the development of photobioelectrochemical systems for H2 and NH3 synthesis, biosensing, and bioremediation purposes. The polydopamine matrix preparation strategy allowed the entrapment of active purple bacteria cells by initial oxygenic polymerization followed by electrochemical polymerization. Our results unveil that the deposition of bacterial cells with simultaneous polymerization of polydopamine on the electrode surface enables a 5-fold enhancement in extracellular electron transfer at the biotic/abiotic interface while maintaining the viability of the cells. The presented approach paves the way for a more sustainable development of biohybrid photoelectrodes.

2.
Foods ; 9(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066448

ABSTRACT

In the last decade, the dairy industry underwent a rapid expansion due to the increasing demand of milk-based products, resulting in high quantity of wastewater, i.e., whey and ricotta cheese exhausted whey (RCEW). Although containing high content of nutritional compounds, dairy by-products are still disposed as waste rather being reintroduced in a new production chain, hence leading to environmental and economic issues. This study proposes a new biotechnological approach based on the combination of membrane filtration and fermentation to produce poly-hydroxyalkanoates (PHA), biodegradable bioplastics candidate as an alternative to petroleum-derived plastics. The protocol, exploiting the metabolic capability Haloferax mediterranei to synthesize PHA from RCEW carbon sources, was set up under laboratory and pilot scale conditions. A multi-step fractionation was used to recover a RCEW fraction containing 12.6% (w/v) of lactose, then subjected to an enzymatic treatment aimed at releasing glucose and galactose. Fermentation conditions (culture medium for the microorganism propagation, inoculum size, time, and temperature of incubation) were selected according to the maximization of polymer synthesis, under in-flasks experiments. The PHA production was then tested using a bioreactor system, under stable and monitored pH, temperature, and stirring conditions. The amount of the polymer recovered corresponded to 1.18 g/L. The differential scanning calorimetry (DSC) analysis revealed the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the polymer synthesized, with a relatively high presence of hydroxyvalerate (HV). Identity and purity of the polymer were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy analyses. By combining the fractionation of RCEW, one of the most abundant by-products from the agri-food industry, and the use of the halophile Hfx mediterranei, the production of PHBV with high purity and low crystallinity has successfully been optimized. The process, tested up to pilot scale conditions, may be further implemented (e.g., through fed-batch systems) and used for large-scale production of bioplastics, reducing the economical and environmental issues related the RCEW disposal.

3.
J Healthc Eng ; 2018: 6573947, 2018.
Article in English | MEDLINE | ID: mdl-29850000

ABSTRACT

In this work, tunable nonwoven mats based on poly(3-hydroxybutyrate) (PHB) and type I collagen (Coll) were successfully produced by electrospinning. The PHB/Coll weight ratio (fixed at 100/0, 70/30, and 50/50, resp.) was found to control the morphological, thermal, mechanical, and degradation properties of the mats. Increasing collagen amounts led to larger diameters of the fibers (in the approximate range 600-900 nm), while delaying their thermal decomposition (from 245°C to 262°C). Collagen also accelerated the hydrolytic degradation of the mats upon incubation in aqueous medium at 37°C for 23 days (with final weight losses of 1%, 15%, and 23% for 100/0, 70/30, and 50/50 samples, resp.), as a result of increased mat wettability and reduced PHB crystallinity. Interestingly, 70/30 meshes were the ones displaying the lowest stiffness (~116 MPa; p < 0.05 versus 100/0 and 50/50 meshes), while 50/50 samples had an elastic modulus comparable to that of 100/0 ones (~250 MPa), likely due to enhanced physical crosslinking of the collagen chains, at least at high protein amounts. All substrates were also found to allow for good viability and proliferation of murine fibroblasts, up to 6 days of culture. Collectively, the results evidenced the potential of as-spun PHB/Coll meshes for tissue engineering applications.


Subject(s)
Biocompatible Materials , Collagen Type I/chemistry , Hydroxybutyrates/chemistry , Polyesters/chemistry , Tissue Engineering/instrumentation , 3-Hydroxybutyric Acid/chemistry , Animals , Cell Proliferation , Cell Survival , Collagen/chemistry , Hot Temperature , Hydrolysis , Mice , NIH 3T3 Cells , Polymers , Porosity , Powders , Pressure , Prohibitins , Stress, Mechanical , Tensile Strength , Tissue Engineering/methods , Wettability
5.
ChemSusChem ; 4(9): 1311-5, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21656696

ABSTRACT

Aqueous glycerol was used as the hydrogen source for the reduction of CO(2) to the hydrogen carrier formic acid in the presence of the catalyst [RuCl(2)(PPh(3))(3)]. All intermediates were identified and characterized. Glycerol was converted into glycolic acid, HO-CH(2)-COOH, that was identified by using (1)H and (13)C NMR spectroscopy.


Subject(s)
Carbon Dioxide/chemistry , Glycerol/chemistry , Hydrogen/chemistry , Recycling/methods , Ruthenium/chemistry , Water/chemistry , Hydrogenation
6.
Dalton Trans ; 39(30): 6985-92, 2010 Aug 14.
Article in English | MEDLINE | ID: mdl-20544121

ABSTRACT

NbCl(5) x (N,N'-dicyclohexylurea) 1a owns a distorted octahedral structure due to intramolecular NH...Cl bonding. The unit cell contains four units which are intermolecularly NH...Cl and NH...N bonded. An extended intramolecular network of H-bonding (N-H...Cl, CH...Cl, CH...N) causes the 3D self assembling of the units. Upon addition of base, the HCl release from 1a is observed with the transfer to Nb of the O-atom of the carbonylic function of the starting urea which is converted into the relevant carbodiimide CyN=C=NCy 4. The latter is quantitatively released by adding an excess of NEt(3) at 308 K (py and DBU are less efficient) with formation of the known NbOCl(3)(NEt(3))(2), isolated in quantitative yield. Increasing the temperature leads to a loss in selectivity as the formed DCC undergoes further reactions. At 350 K, the isocyanate CyN=C=O has been isolated in 60% yield besides a mixture of Nb-complexes. DFT calculations have been coupled to IR and NMR experiments for characterizing possible reaction intermediates and the behaviour of 1a. Several other MCl(x) species (ScCl(3), YCl(3), LaCl(3), TiCl(4), TaCl(5), AlCl(3), SnCl(4)) have been shown to be able to co-ordinate DCU but not all of them promote the conversion of urea into DCC.


Subject(s)
Carbodiimides/chemistry , Chlorides/chemistry , Niobium/chemistry , Urea/analogs & derivatives , Urea/chemistry , Chlorides/chemical synthesis , Computer Simulation , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Structure , Solutions , Temperature , Urea/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...