Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 119(1): 59-73, 2023 01.
Article in English | MEDLINE | ID: mdl-36420630

ABSTRACT

The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iß-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iß-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.


Subject(s)
Escherichia coli , Vibrio vulnificus , Escherichia coli/metabolism , Vibrio vulnificus/metabolism , Heme/metabolism , Carrier Proteins/metabolism , Oxygen/metabolism , Bacterial Proteins/metabolism
2.
Transl Psychiatry ; 12(1): 83, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35220393

ABSTRACT

Childhood obesity leads to hippocampal atrophy and altered cognition. However, the molecular mechanisms underlying these impairments are poorly understood. The neurotrophic factor neuregulin-1 (NRG1) and its cognate ErbB4 receptor play critical roles in hippocampal maturation and function. This study aimed to determine whether exogenous NRG1 administration reduces hippocampal abnormalities and neuroinflammation in rats exposed to an obesogenic Western-like diet (WD). Lewis rats were randomly divided into four groups (12 rats/group): (1) control diet+vehicle (CDV); (2) CD + NRG1 (CDN) (daily intraperitoneal injections: 5 µg/kg/day; between postnatal day, PND 21-PND 41); (3) WD + VEH (WDV); (4) WD + NRG1 (WDN). Neurobehavioral assessments were performed at PND 43-49. Brains were harvested for MRI and molecular analyses at PND 49. We found that NRG1 administration reduced hippocampal volume (7%) and attenuated hippocampal-dependent cued fear conditioning in CD rats (56%). NRG1 administration reduced PSD-95 protein expression (30%) and selectively reduced hippocampal cytokine levels (IL-33, GM-CSF, CCL-2, IFN-γ) while significantly impacting microglia morphology (increased span ratio and reduced circularity). WD rats exhibited reduced right hippocampal volume (7%), altered microglia morphology (reduced density and increased lacunarity), and increased levels of cytokines implicated in neuroinflammation (IL-1α, TNF-α, IL-6). Notably, NRG1 synergized with the WD to increase hippocampal ErbB4 phosphorylation and the tumor necrosis alpha converting enzyme (TACE/ADAM17) protein levels. Although the results did not provide sufficient evidence to conclude that exogenous NRG1 administration is beneficial to alleviate obesity-related outcomes in adolescent rats, we identified a potential novel interaction between obesogenic diet exposure and TACE/ADAM17-NRG1-ErbB4 signaling during hippocampal maturation. Our results indicate that supraoptimal ErbB4 activities may contribute to the abnormal hippocampal structure and cognitive vulnerabilities observed in obese individuals.


Subject(s)
Neuregulin-1 , Pediatric Obesity , Animals , Anxiety , Diet , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , Neuroinflammatory Diseases , Rats , Rats, Inbred Lew
3.
Curr Opin Microbiol ; 61: 8-15, 2021 06.
Article in English | MEDLINE | ID: mdl-33647528

ABSTRACT

PAS domains are widespread, versatile domains found in proteins from all kingdoms of life. The PAS fold is composed of an antiparallel ß-sheet with several flanking α-helices, and contains a conserved cleft for cofactor or ligand binding. The last few years have seen a prodigious increase in identified PAS domains and resolved PAS structures, including structures with effector and other domains. New bacterial PAS ligands have been discovered, and structure-function studies have improved our understanding of PAS signaling mechanisms. The list of bacterial PAS functions has now expanded to include roles in signal sensing, modulation, transduction, dimerization, protein interaction, and cellular localization.


Subject(s)
Bacterial Proteins , Signal Transduction , Bacteria/genetics , Bacterial Proteins/genetics , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...