Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Lett ; 268: 106884, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908524

ABSTRACT

Ablation of the immune-specific catalytic subunit Cß2 of protein kinase A is associated with a proinflammatory phenotype and increased sensitivity to autoimmunity in mice. Here we show that tumour growth of the adenocarcinoma cell line EO771 in the breast and in the lung after injection into the mammary fat pad and tail vein, respectively, was significantly reduced in mice ablated for Cß2 compared to wild-type mice. In both cases, the breast and lung tumours showed increased infiltration of immune cells in the mice lacking Cß2 compared to wild-type mice. Despite this, it appeared that solid tissue- versus intravenously injected EO771 cells evoked different immune responses. This was reflected by significantly increased levels of splenic proinflammatory immune cells and circulating cytokines in Cß2 ablated mice carrying breast- but not the lung tumours. Moreover, Cß2 ablated mice injected with EO771 cells showed increased overall survival compared to wild-type mice. Taken together, our results suggest for a role for immune cell-specific Cß2 in protecting against tumour growth induced by EO771 cells in mice that is reflected in improved overall survival.

2.
Front Cell Infect Microbiol ; 12: 841447, 2022.
Article in English | MEDLINE | ID: mdl-35360113

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to the initiation of unprecedented research efforts to understand the pathogenesis mediated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). More knowledge is needed regarding the cell type-specific cytopathology and its impact on cellular tropism. Furthermore, the impact of novel SARS-CoV-2 mutations on cellular tropism, alternative routes of entry, the impact of co-infections, and virus replication kinetics along the respiratory tract remains to be explored in improved models. Most applied virology models are not well suited to address the remaining questions, as they do not recapitulate the histoarchitecture and cellular composition of human respiratory tissues. The overall aim of this work was to establish from single biopsy specimens, a human adult stem cell-derived organoid model representing the upper respiratory airways and lungs and explore the applicability of this model to study respiratory virus infection. First, we characterized the organoid model with respect to growth pattern and histoarchitecture, cellular composition, and functional characteristics. Next, in situ expression of viral entry receptors, including influenza virus-relevant sialic acids and SARS-CoV-2 entry receptor ACE2 and TMPRSS2, were confirmed in organoids of bronchiolar and alveolar differentiation. We further showed successful infection by pseudotype influenza A H7N1 and H5N1 virus, and the ability of the model to support viral replication of influenza A H7N1 virus. Finally, successful infection and replication of a clinical isolate of SARS-CoV-2 were confirmed in the organoids by TCID50 assay and immunostaining to detect intracellular SARS-CoV-2 specific nucleocapsid and dsRNA. The prominent syncytia formation in organoid tissues following SARS-CoV-2 infection mimics the findings from infected human tissues in situ. We conclude that the human organotypic model described here may be particularly useful for virology studies to evaluate regional differences in the host response to infection. The model contains the various cell types along the respiratory tract, expresses respiratory virus entry factors, and supports successful infection and replication of influenza virus and SARS-CoV-2. Thus, the model may serve as a relevant and reliable tool in virology and aid in pandemic preparedness, and efficient evaluation of antiviral strategies.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N1 Subtype , Influenza, Human , Adult , Humans , Lung , Organoids , SARS-CoV-2
3.
PLoS One ; 4(7): e6381, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19636430

ABSTRACT

Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2) = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO(2) = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.


Subject(s)
Adenocarcinoma/pathology , Epithelial Cells/cytology , Hyperoxia/drug therapy , Mesoderm/cytology , Models, Biological , Animals , Female , Immunohistochemistry , Rats , Rats, Sprague-Dawley
4.
J Neurooncol ; 85(2): 191-202, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17557137

ABSTRACT

This study describes the biological effects of hyperoxic treatment on BT4C rat glioma xenografts in vivo with special reference to tumor growth, angiogenesis, apoptosis, general morphology and gene expression parameters. One group of tumor bearing animals was exposed to normobaric hyperoxia (1 bar, pO(2) = 1.0) and another group was exposed to hyperbaric hyperoxia (2 bar, pO(2) = 2.0), whereas animals housed under normal atmosphere (1 bar, pO(2) = 0.2) served as controls. All treatments were performed at day 1, 4 and 7 for 90 min. Treatment effects were determined by assessment of tumor growth, vascular morphology (immunostaining for von Willebrand factor), apoptosis by TUNEL staining and cell proliferation by Ki67 staining. Moreover, gene expression profiles were obtained and verified by real time quantitative PCR. Hyperoxic treatment caused a approximately 60% reduction in tumor growth compared to the control group after 9 days (p < 0.01). Light microscopy showed that the tumors exposed to hyperoxia contained large "empty spaces" within the tumor mass. Moreover, hyperoxia induced a significant increase in the fraction of apoptotic cells ( approximately 21%), with no significant change in cell proliferation. After 2 bar treatment, the mean vascular density was reduced in the central parts of the tumors compared to the control and 1 bar group. The vessel diameters were significantly reduced (11-24%) in both parts of the tumor tissue. Evidence of induced cell death and reduced angiogenesis was reflected by gene expression analyses.Increased pO(2)-levels in experimental gliomas, using normobaric and moderate hyperbaric oxygen therapy, caused a significant reduction in tumor growth. This process is characterized by enhanced cell death, reduced vascular density and changes in gene expression corresponding to these effects.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Hyperbaric Oxygenation , Hyperoxia/metabolism , Neovascularization, Pathologic/prevention & control , Animals , Apoptosis/physiology , Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/physiology , Glioma/blood supply , Glioma/pathology , Hyperoxia/pathology , Male , Neoplasms, Experimental , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Oxygen/metabolism , Oxygen/therapeutic use , RNA, Neoplasm/analysis , Random Allocation , Rats , Rats, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...