Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 163(1): 17-23, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23089728

ABSTRACT

Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 µg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 µg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale.


Subject(s)
Acetates/metabolism , Bioreactors/microbiology , Biotechnology/methods , Kluyveromyces/metabolism , Milk/metabolism , Acetates/analysis , Aerobiosis , Animals , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Culture Media/chemistry , Culture Media/metabolism , Ethanol/analysis , Ethanol/metabolism , Iron/metabolism , Milk/chemistry , Pilot Projects
2.
Appl Microbiol Biotechnol ; 96(3): 685-96, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22695802

ABSTRACT

The ability of Kluyveromyces marxianus to convert lactose into ethyl acetate offers a chance for an economic reuse of whey. Former experiments with K. marxianus DSM 5422 proved limitation of growth by iron (Fe) or copper as a precondition for significant ester synthesis. Several aerobic batch and chemostat cultivations were done with whey-borne media of a variable Fe content for exploring the effect of Fe on growth, the Fe content of biomass, and metabolite synthesis. At low Fe doses, Fe was the growth-limiting factor, the available Fe was completely absorbed by the yeasts, and the biomass formation linearly depended on the Fe dose governed by a minimum Fe content in the yeasts, x (Fe,min). At batch conditions, x (Fe,min) was 8.8 µg/g, while during chemostat cultivation at D = 0.15 h(-1), it was 23 µg/g. At high Fe doses, sugar was the growth-limiting factor, Fe was more or less absorbed, and the formed biomass became constant. Significant amounts of ethyl acetate were only formed at Fe limitation while high Fe doses suppressed ester formation. Analysis of formed metabolites such as glycerol, pyruvate, acetate, ethanol, ethyl acetate, isocitrate, 2-oxoglutarate, succinate, and malate during chemostat cultivation allowed some interpretation of the Fe-dependent mechanism of ester synthesis; formation of ethyl acetate from acetyl-SCoA and ethanol is obviously initiated by a diminished metabolic flux of acetyl-SCoA into the citrate cycle and by a limited oxidation of NADH in the respiratory chain since Fe is required for the function of aconitase, succinate dehydrogenase, and the electron-transferring proteins.


Subject(s)
Acetates/metabolism , Dairy Products/microbiology , Iron/metabolism , Kluyveromyces/growth & development , Kluyveromyces/metabolism , Aerobiosis , Biomass , Industrial Waste , Lactose/metabolism
3.
Appl Microbiol Biotechnol ; 96(5): 1313-23, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22573271

ABSTRACT

Kluyveromyces marxianus is able to transform lactose into ethyl acetate as a bulk product which offers a chance for an economical reuse of whey-borne sugar. Ethyl acetate is highly volatile and allows its process-integrated recovery by stripping from the aerated bioreactor. Extensive formation of ethyl acetate by K. marxianus DSM 5422 required restriction of yeast growth by a lack of trace elements. Several aerobic batch processes were done in a 1-L stirred reactor using whey-borne culture medium supplemented with an individual trace element solution excluding Mn, Mo, Fe, Cu, or Zn for identifying the trace element(s) crucial for the observed ester synthesis. Only a lack of Fe, Cu, or Zn restricted yeast growth while exclusion of Mn and Mo did not exhibit any effect due to a higher amount of the latter in the used whey. Limitation of growth by Fe or Cu caused significant production of ethyl acetate while limitation by Zn resulted in formation of ethanol. A lack of Fe or Cu obviously makes the respiratory chain inefficient resulting in an increased mitochondrial NADH level followed by a reduced metabolic flux of acetyl-SCoA into the citrate cycle. Synthesis of ethyl acetate from acetyl-SCoA and ethanol by alcoholysis is thus interpreted as an overflow metabolism.


Subject(s)
Acetates/metabolism , Kluyveromyces/metabolism , Milk/metabolism , Trace Elements/metabolism , Acetyl Coenzyme A/metabolism , Aerobiosis , Animals , Culture Media/chemistry , Ethanol/metabolism , Kluyveromyces/growth & development , Milk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...