Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 11(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38006063

ABSTRACT

Neuraminidase (NA)-based immunity could reduce the harmful impact of novel antigenic variants of influenza viruses. The detection of neuraminidase-inhibiting (NI) antibodies in parallel with anti-hemagglutinin (HA) antibodies may enhance research on the immunogenicity and duration of antibody responses to influenza vaccines. To assess anti-NA antibodies after vaccination with seasonal inactivated influenza vaccines, we used the enzyme-linked lectin assay, and anti-HA antibodies were detected in the hemagglutination inhibition assay. The dynamics of the anti-NA antibody response differed depending on the virus subtype: antibodies to A/H3N2 virus neuraminidase increased later than antibodies to A/H1N1pdm09 subtype neuraminidase and persisted longer. In contrast to HA antibodies, the fold increase in antibody titers to NA after vaccination poorly depended on the preexisting level. At the same time, NA antibody levels after vaccination directly correlated with titers before vaccination. A difference was found in response to NA antigen between split and subunit-adjuvanted vaccines and in NA functional activity in the vaccine formulations.

2.
Iran J Basic Med Sci ; 26(5): 558-563, 2023.
Article in English | MEDLINE | ID: mdl-37051099

ABSTRACT

Objectives: A new vaccine candidate TB/FLU-05E has been developed at the Smorodintsev Research Institute of Influenza (Russia). The vaccine is based on the attenuated influenza strain A/PR8/NS124-TB10.4-2A-HspX that expresses mycobacterial antigens TB10.4 and HspX. This article describes the results of preclinical immunotoxicity and allergenicity studies of the new vector vaccine TB/FLU-05E against tuberculosis. Materials and Methods: The experiments were conducted on male CBA mice, С57/black/6 mice, and guinea pigs. The vaccine candidate was administered intranasally (7.7 lg TCID50/animal and 8.0 lg TCID50/animal) twice at a 21-day interval. The immunotoxic properties of the vaccine were assessed in mice according to the following parameters: spleen and thymus weight and their organ-to-body weight ratio, splenic and thymic cellularity, hemagglutination titer assay, delayed-type hypersensitivity test, and phagocytic activity of peritoneal macrophages. Histological examination of the thymus and spleen and white blood cell counts were also performed. Allergenicity of the vaccine was assessed in guinea pigs using conjunctival and general anaphylaxis reaction tests. Results: The results showed that double immunization with the TB/FLU-05E vaccine did not affect the phagocytic activity of peritoneal macrophages, cellular and humoral immunity after immunization with a heterologous antigen (sheep red blood cells), or the organ-to-body weight ratio of immunocompetent organs (thymus and spleen). The vaccine candidate demonstrated no allergenic properties. Conclusion: According to the results of this study, the TB/FLU-05E vaccine is well-tolerated by the immune system and demonstrates no immunotoxicity or allergenicity.

4.
Vaccines (Basel) ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36851204

ABSTRACT

COVID-19, being a life-threatening infection that evolves rapidly, remains a major public health concern calling for the development of vaccines with broad protection against different pathogenic strains and high immunogenicity. Aside from this, other concerns in mass immunization settings are also the scalability of production and relative affordability of the technology. In that regard, adjuvanted protein vaccines with particles mimicking the virus stand out among known vaccine technologies. The "Betuvax-CoV-2" vaccine, developed on the basis of a recombinant protein and an adjuvant, has already been tested in preclinical studies and has advanced to clinical evaluation. Open, double-blinded, placebo-controlled, randomized phase I/II clinical trial of the "Betuvax-CoV-2," recombinant protein subunit vaccine based on the S-protein RBD fused with the Fc-fragment of IgG, was conducted to evaluate safety and immunogenicity in response to the vaccination. METHODS: In the phase I/II clinical trial, 116 healthy adult men and women, ages 18-58, were enrolled: 20 in Stage I, and 96 in Stage II. In Stage I, 20 µg of the vaccine was administered intramuscularly on day 2, and either 5 µg (group 1) or 20 µg (group 2) on day 30. In Stage II, 20 µg of the vaccine was administered intramuscularly on day 2, and either 5 µg (group 3) or 20 µg (group 4) on day 30. In group 5, both injections were replaced with placebo. The primary outcome measures were safety (number of participants with adverse events throughout the study) and antigen-specific humoral immunity (SARS-CoV-2-specific antibodies measured by ELISA and CMIA). Antigen-specific cell-mediated immunity and changes in neutralizing antibodies (detected with a SARS-CoV-2 neutralization assay) were measured as a secondary outcome. The trial is registered with ClinicalTrials.gov (Study Identifier: NCT05270954). FINDINGS: Both vaccine formulations (20 µg + 5 µg and 20 µg + 20 µg) were safe and well tolerated. Most adverse events were mild, and no serious adverse events were detected. On day 51,anti-SARS-CoV-2 total and IgG antibody titers and anti-SARS-CoV-2 neutralizing antibodies were significantly higher in the vaccine groups (both formulations) than in the placebo. A more pronounced CD4+-mediated immune response was observed in the group of volunteers administered with the 20 + 20 µg vaccine formulation. INTERPRETATIONS: RBD-Fc-based COVID-19 "Betuvax-CoV-2" vaccine in doses (20 + 5 µg and 20 + 20 µg) demonstrated an excellent safety profile and induced a strong humoral response. Further research on the protective effectiveness of the "Betuvax-CoV-2" vaccine for the prevention of COVID-19 is on its way.

5.
Nat Commun ; 14(1): 149, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627290

ABSTRACT

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Subject(s)
COVID-19 , T-Lymphocytes, Cytotoxic , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
Vaccines (Basel) ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36016181

ABSTRACT

Public health threat coming from a rapidly developing COVID-19 pandemic calls for developing safe and effective vaccines with innovative designs. This paper presents preclinical trial results of "Betuvax-CoV-2", a vaccine developed as a subunit vaccine containing a recombinant RBD-Fc fusion protein and betulin-based spherical virus-like nanoparticles as an adjuvant ("Betuspheres"). The study aimed to demonstrate vaccine safety in mice, rats, and Chinchilla rabbits through acute, subchronic, and reproductive toxicity studies. Along with safety, the vaccine demonstrated protective efficacy through SARS-CoV-2-neutralizing antibody production in mice, rats, hamsters, rabbits, and primates (rhesus macaque), and lung damage and infection protection in hamsters and rhesus macaque model. Eventually, "Betuvax-CoV-2" was proved to confer superior efficacy and protection against the SARS-CoV-2 in preclinical studies. Based on the above results, the vaccine was enabled to enter clinical trials that are currently underway.

7.
Vaccines (Basel) ; 10(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35062730

ABSTRACT

The COVID-19 pandemic is ongoing, and the need for safe and effective vaccines to prevent infection and to control spread of the virus remains urgent. Here, we report the development of a SARS-CoV-2 subunit vaccine candidate (Betuvax-CoV-2) based on RBD and SD1 domains of the spike (S) protein fused to a human IgG1 Fc fragment. The antigen is adsorbed on betulin adjuvant, forming spherical particles with a size of 100-180 nm, mimicking the size of viral particles. Here we confirm the potent immunostimulatory activity of betulin adjuvant, and demonstrate that two immunizations of mice with Betuvax-CoV-2 elicited high titers of RBD-specific antibodies. The candidate vaccine was also effective in stimulating a neutralizing antibody response and T cell immunity. The results indicate that Betuvax-CoV-2 has good potential for further development as an effective vaccine against SARS-CoV-2.

8.
Vaccines (Basel) ; 9(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835204

ABSTRACT

BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.

9.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923548

ABSTRACT

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1-124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.

10.
Clin Vaccine Immunol ; 20(8): 1314-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23803900

ABSTRACT

In this study, we assessed in humans the immunogenicity and safety of one dose (7.5 or 15 µg of hemagglutinin [HA]) of a whole-virion inactivated prepandemic influenza vaccine adjuvanted with aluminum hydroxide. The vaccine strain was made by reverse genetics from the highly pathogenic avian A/Chicken/Astana/6/05 (H5N1) clade 2.2 strain isolated from a dead bird in Kazakhstan. The humoral immune response was evaluated after a single vaccination by hemagglutination inhibition (HI) and microneutralization (MN) assays. The vaccine was safe and immunogenic, inducing seroconversion in 55% of the evaluated patients, with a geometric mean titer (GMT) of 17.1 and a geometric mean increase (GMI) of 3.42 after a dose of 7.5 µg in the HI test against the vaccine strain. The rate of seroconversion increased up to 70% when the dose of 15 µg was used. The percentages of individuals achieving anti-HA titers of ≥1:40 were 52.5% and 57.5% for the 7.5- and 15-µg dose groups, respectively. Similar results were obtained when antibodies were analyzed in an MN test. Substantial cross-neutralization titers (seroconversion in 35% and 52.5% of subjects in the two dose groups, respectively) were detected against heterologous clade 1 strain NIBRG14 (H5N1). Thus, one dose of this whole-virion prepandemic vaccine adjuvanted with aluminum has the potential to be effective against H5N1 viruses of different clades.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adult , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/adverse effects , Animals , Antibodies, Viral/blood , Cross Reactions , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Kazakhstan , Male , Middle Aged , Neutralization Tests , Reverse Genetics , Russia , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...