Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Rheumatol Online J ; 20(1): 99, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384772

ABSTRACT

BACKGROUND: Diagnosing synovial inflammation by administration of gadolinium-based contrast agents is limited by invasiveness and possible side effects, especially in children and adolescents. PURPOSE: We investigated diagnostic accuracy of diffusion-weighted (DWI) MRI with intravoxel incoherent motion (IVIM) imaging compared to contrast-enhanced MRI for detecting synovitis of the knee in a population of pediatrics and young adults. In addition we compared quantitative measures of synovial diffusion and perfusion to a group of healthy volunteers. METHODS: In this prospective study, 8 pediatric patients with 10 symptomatic knees (6 girls and 2 boys, mean age 13 years) with known or suspected synovitis underwent pre- and post-contrast 3.0 T MRI of the knee joint and additional DWI sequences between October 2016 and July 2019. For comparison we enrolled 5 healthy young adults (2 women and 3 men, median age 27 years) with contrast-free MRI of both knees. Post-contrast T1w images and DWI images at b = 1000s/mm2 with apparent diffusion coefficient (ADC) maps of patients were separately rated by two independent and blinded readers with different levels of experience for the presence or absence and degree of synovitis along with the level of confidence. We measured signal intensity on DWI of synovium, joint effusion and muscle with regions of interests and calculated the IVIM-parameters tissue diffusion coefficient (D) and perfusion fraction (f) for patients and volunteers. RESULTS: All patients showed at least some synovial contrast enhancement, 8 (80%) children knees were diagnosed with synovitis on contrast-enhanced (= ce)-T1w, the diagnostic standard. Ratings by the first and second reader on ce-T1w and DWI showed full agreement (kappa = 1) in diagnosing synovitis and substantial agreement (k = 0,655) for the degree of synovial enhancement. Interobserver agreement on DWI showed fair agreement (k = 0,220) between both readers. Diagnostic confidence was lower on DWI. Mean D- and f-values of muscle was comparable between patients and volunteers. Effusion mean D was higher, mean f was lower, synovial mean D was lower, mean f higher in patients than in volunteers. All differences were statistically significant (p < 0.001). CONCLUSIONS: Diffusion-weighted MRI with IVIM imaging remains a promising, though reader-dependent alternative to i.v. contrast-enhanced imaging in pediatric patients to reliably diagnose, or rule out, synovitis of the knee joint. We detected significantly restricted synovial diffusion and increased perfusion in patients compared to healthy volunteers. TRIAL REGISTRATION: Ethical Comitee University Hospital Ulm, Nr. 320/16.


Subject(s)
Synovitis , Male , Adolescent , Young Adult , Humans , Child , Female , Adult , Prospective Studies , Pilot Projects , Synovitis/diagnostic imaging , Magnetic Resonance Imaging/methods , Knee Joint/diagnostic imaging
2.
Quant Imaging Med Surg ; 12(10): 4720-4733, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36185060

ABSTRACT

Background: Imaging the lung parenchyma with magnetic resonance imaging (MRI) is challenging due to cardiac and respiratory motion, the low proton density and short T2* relaxation time, and therefore not well established in the clinical routine. As a further step in facilitating lung MRI for longitudinal monitoring, this study aimed to assess the reproducibility of 2D ultrashort echo time (UTE)-derived lung function parameters in healthy subjects. Methods: In this study, a 2D UTE technique was combined with tiny golden angle (tyGA) ordering. Data were acquired either during breath-holds (BH) or continuously during free-breathing (FB) at a field strength of 3T. Retrospective self-gating (image- and k-space-based) was used to reconstruct respiratory and cardiac multistage images from the FB acquisitions. The reproducibility of functional lung parameters derived from BH and FB acquisitions was assessed for three independent examinations (M1-3). M1 and M2 were acquired within 2 h, whereas M3 was acquired at least 14 d after M1/2. Different respiratory and cardiac phases were reconstructed for three coronal slices. Quantitative analysis including proton fraction (fP ), apparent signal-to-noise ratio (apparent SNR), fractional ventilation (FV), and perfusion (f) was performed by two independent observers, and inter-measurement and inter-observer repeatability were assessed. Results: All scans could be performed successfully in all volunteers. Intraclass correlation coefficients (ICC) of inter-measurement and inter-observer variability, and Bland-Altman analysis showed good to very good reproducibility. Larger breathing amplitudes were observed in the BH acquisitions, which also showed lower reproducibility when compared with the FB acquisitions. For the FB approach, the ICC ranged between 0.70 and 0.98 for all measurements, and ranged between 0.86 and 0.97 for the two observers. No bias or significant differences were observed between the three measurements or the two observers in healthy volunteers. Conclusions: The study proves the feasibility of FB 2D tyGA UTE for lung imaging. Functional parameters derived from FB acquisitions are reproducible in healthy volunteers, allowing for further investigation of this technique in patients with various underlying diseases.

3.
Front Bioeng Biotechnol ; 8: 582055, 2020.
Article in English | MEDLINE | ID: mdl-33042980

ABSTRACT

Degenerative changes of menisci contribute to the evolution of osteoarthritis in the knee joint, because they alter the load transmission to the adjacent articular cartilage. Identifying alterations in the strain response of meniscal tissue under compression that are associated with progressive degeneration may uncover links between biomechanical function and meniscal degeneration. Therefore, the goal of this study was to investigate how degeneration effects the three-dimensional (3D; axial, circumferential, radial) strain in different anatomical regions of human menisci (anterior and posterior root attachment; anterior and posterior horn; pars intermedia) under simulated compression. Magnetic resonance imaging (MRI) was performed to acquire image sequences of 12 mild and 12 severe degenerated knee joints under unloaded and loaded [25%, 50% and 100% body weight (BW)] conditions using a customized loading device. Medial and lateral menisci as well as their root attachments were manually segmented. Intensity-based rigid and non-rigid image registration were performed to obtain 3D deformation fields under the respective load levels. Finally, the 3D voxels were transformed into hexahedral finite-element models and direction-dependent local strain distributions were determined. The axial compressive strain in menisci and meniscal root attachments significantly increased on average from 3.1% in mild degenerated joints to 7.3% in severe degenerated knees at 100% BW (p ≤ 0.021). In severe degenerated knee joints, the menisci displayed a mean circumferential strain of 0.45% (mild: 0.35%) and a mean radial strain of 0.41% (mild: 0.37%) at a load level of 100% BW. No significant changes were observed in the circumferential or radial directions between mild and severe degenerated knee joints for all load levels (p > 0.05). In conclusion, high-resolution MRI was successfully combined with image registration to investigate spatial strain distributions of the meniscus and its attachments in response to compression. The results of the current study highlight that the compressive integrity of the meniscus decreases with progressing tissue degeneration, whereas the tensile properties are maintained.

4.
J Magn Reson Imaging ; 52(6): 1637-1644, 2020 12.
Article in English | MEDLINE | ID: mdl-32652765

ABSTRACT

BACKGROUND: Imaging of the lung by MRI is challenging due to the intrinsic low proton density and rapid T2 * relaxation. MRI methods providing lung parenchyma and function are in demand. PURPOSE: To investigate the feasibility of two-dimensional ultrashort echo-time (2D UTE) imaging for lung function assessment. STUDY TYPE: Prospective. POPULATION: Eleven healthy volunteers. FIELD STRENGTH/SEQUENCE: 3T, 2D tiny golden angle UTE (2D-tyUTE). ASSESSMENT: The applicability of breath-hold (BH) and self-gated (SG) 2D-tyUTE for quantification of the lung parenchyma signal-to-noise ratio (SNR), proton fraction (fP ), fractional ventilation (FV), and perfusion (f) was investigated. Dependencies on repetition time (BHS/I1/I2 ) and respiratory phase (expiration [EX], inspiration [IN]) were investigated and compared between smokers and nonsmokers. STATISTICAL TESTS: Analysis of variance (ANOVA), Kendell's W. RESULTS: Significant differences of SNR (EX: 10.98 ± 3.19(BHS ), 14.58 ± 3.89(BHI1 ), 17.59 ± 4.92(BHI2 ), 11.00 ± 5.42(SG); IN: 7.17 ± 2.07(BHS ), 9.51 ± 2.37(BHI1 ), 10.49 ± 2.33(BHI2 ), 10.00 ± 4.14(SG)) (P < 0.05 for all cases) were observed between the different approaches. Where fP in expiration (0.41 ± 0.13) was independent of the BH imaging technique, it was slightly higher in SG (0.44 ± 0.06). FV was reproducible among the BH techniques (0.41 ± 0.10), but significantly lower in SG (0.21 ± 0.06) (P < 0.05). A moderate correlation (R2 = 0.47, P < 0.01) was observed between the breathing amplitude and FV. No significant differences between BH and SG were observed for the perfusion analysis (EX: 3.50 ± 1.29 mL/min/mL [BHS ]; IN: 2.36 ± 1.05 mL/min/mL [BHS ]). Significant differences in fP were found between smokers (0.48 ± 0.11 BH) and nonsmokers (0.37 ± 0.12 BH) in expiration. DATA CONCLUSION: This study demonstrates the feasibility of 2D-tyUTE for successful quantification of relevant lung function parameters at 3T within clinically attractive acquisition times. The low spatial resolution into the slice selection direction may limit the final sensitivity and needs further clinical evaluation. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1637-1644.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Signal-To-Noise Ratio
5.
Magn Reson Med ; 84(5): 2616-2624, 2020 11.
Article in English | MEDLINE | ID: mdl-32390153

ABSTRACT

PURPOSE: To investigate the applicability of a 2D-UTE half-pulse sequence for dental overview imaging and the detection of signal from mineralized dental tissue and caries lesions with ultra-short T2∗ as an efficient alternative to 3D sequences. METHODS: A modified 2D-UTE sequence using 240-µs half-pulses for excitation and a reduction of the coil tune delay from the manufacturer preset value allowed for the acquisition of in vivo dental images with a TE of 35 µs at 1.5T. The common occurrence of out-of-slice signal for half-pulse sequences was avoided by applying a quadratic-phase saturation pulse before each half-RF excitation. A conventional 2D-UTE sequence with a TE of 750 µs, using slice selection rephasing, was used for comparison. RESULTS: Quadratic phase saturation pulses adequately improve the slice profile of half-pulse excitations for dental imaging with a surface coil. In vivo images and SNR measurements show a distinct increase in signal in ultrashort T2∗ tissues for the proposed 2D-UTE half-pulse sequence compared with a 2D-UTE sequence using conventional slice selection, leading to an improved detection of caries lesions. CONCLUSION: The proposed pulse sequence enables the acquisition of in vivo images of a comprehensive overview of bone structures and teeth of a single side of the upper and lower jaw and signal detection from mineralized dental tissues in clinically acceptable scan times.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...