Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0300563, 2024.
Article in English | MEDLINE | ID: mdl-38626236

ABSTRACT

A Hungarian survey of Tokaj-Mád vineyards was conducted. Shotgun metabarcoding was applied to decipher the microbial-terroir. The results of 60 soil samples showed that there were three dominant fungal phyla, Ascomycota 66.36% ± 15.26%, Basidiomycota 18.78% ± 14.90%, Mucoromycota 11.89% ± 8.99%, representing 97% of operational taxonomic units (OTUs). Mutual interactions between microbiota diversity and soil physicochemical parameters were revealed. Principal component analysis showed descriptive clustering patterns of microbial taxonomy and resistance gene profiles in the case of the four historic vineyards (Szent Tamás, Király, Betsek, Nyúlászó). Linear discriminant analysis effect size was performed, revealing pronounced shifts in community taxonomy based on soil physicochemical properties. Twelve clades exhibited the most significant shifts (LDA > 4.0), including the phyla Verrucomicrobia, Bacteroidetes, Chloroflexi, and Rokubacteria, the classes Acidobacteria, Deltaproteobacteria, Gemmatimonadetes, and Betaproteobacteria, the order Sphingomonadales, Hypomicrobiales, as well as the family Sphingomonadaceae and the genus Sphingomonas. Three out of the four historic vineyards exhibited the highest occurrences of the bacterial genus Bradyrhizobium, known for its positive influence on plant development and physiology through the secretion of steroid phytohormones. During ripening, the taxonomical composition of the soil fungal microbiota clustered into distinct groups depending on altitude, differences that were not reflected in bacteriomes. Network analyses were performed to unravel changes in fungal interactiomes when comparing postveraison and preharvest samples. In addition to the arbuscular mycorrhiza Glomeraceae, the families Mycosphaerellacae and Rhyzopodaceae and the class Agaricomycetes were found to have important roles in maintaining soil microbial community resilience. Functional metagenomics showed that the soil Na content stimulated several of the microbiota-related agrobiogeochemical cycles, such as nitrogen and sulphur metabolism; steroid, bisphenol, toluene, dioxin and atrazine degradation and the synthesis of folate.


Subject(s)
Ascomycota , Microbiota , Wine , Humans , Soil/chemistry , Microbiota/genetics , Bacteria , Steroids/metabolism , Soil Microbiology
2.
Cells ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38334643

ABSTRACT

BACKGROUND: Our previous studies demonstrated that sour cherry anthocyanins (AC) reduce the salivary count of Streptococcus mutans and inhibit salivary amylase activity within 30 minutes after chewing AC gum. AC gum and changing toothbrushes after scaling reduced the Gram-negative species in the unstimulated salivary microbiota. The present study examined the effect of AC gums on salivary factors, including changes in microbiome. METHODS: The study was conducted over three weeks with two groups; young adults (18-30) and adults (30-45). Ten participants changed their toothbrushes, while the other 10 participants did not change after the control period. After scaling, all participants received three doses of AC gum daily. The salivary mRNA and protein levels of cytokines, mucins, melatonin, and the microbiota of unstimulated and stimulated saliva were determined by polymerase chain reaction, enzyme-linked immunosorbent assay, and 16S rRNA gene sequencing. RESULTS: Significantly higher levels of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), mucin5B (MUC5B), mucin7 (MUC7), and melatonin were detected in stimulated saliva. Correlation analysis of these factors with the microbiota showed positive correlations with the genera Lachnospiraceae, Eikenella, Saccharibacteria_(TM7), Streptococcus, Prevotella, and Haemophilus. CONCLUSIONS: AC chewing gum has a beneficial effect on the composition of the oral microbiome, and toothbrush replacement leads to changes in the levels of salivary pro-inflammatory cytokines.


Subject(s)
Melatonin , Prunus avium , Young Adult , Humans , Saliva/metabolism , Chewing Gum/analysis , Anthocyanins/metabolism , Melatonin/pharmacology , Melatonin/metabolism , RNA, Ribosomal, 16S/genetics , Cytokines/metabolism
3.
PLoS One ; 18(8): e0290310, 2023.
Article in English | MEDLINE | ID: mdl-37590293

ABSTRACT

In the broiler industry, the average daily gain and feed conversion ratio are extremely favorable, but the birds are beginning to approach the maximum of their genetic capacity. However, as a consequence of strong genetic selection, the occurrence of certain metabolic diseases, such as myopathies, ascites, sudden cardiac death and tibial dyschondroplasia, is increasing. These metabolic diseases can greatly affect the health status and welfare of birds, as well as the quality of meat. The main goal of this study was to investigate the changes in the main parameters of redox homeostasis during the rearing (1-42 days of age) of broilers with high genetic capacity, such as the concentrations of malondialdehyde, vitamin C, vitamin E, and reduced glutathione, the activities of glutathione peroxidase and glutathione reductase, and the inhibition rate of superoxide dismutase. Damage to the transsulfuration pathway during growth and the reason for changes in the level of homocysteine were investigated. Further, the parameters that can characterize the biochemical changes occurring in the birds were examined. Our study is the first characterize plasma albumin saturation. A method was developed to measure the levels of other small molecule thiol components of plasma. Changes in redox homeostasis induce increases in the concentrations of tumor necrosis factor alpha and inflammatory interleukins interleukin 2, interleukin 6 and interleukin 8 in broilers reared according to current large-scale husbandry technology and feeding protocols. A significant difference in all parameters tested was observed on the 21st day. The concentrations of cytokines and homocysteine increased, while the concentrations of glutathione and cysteine in the plasma decreased. Our findings suggest that observed changes in the abovementioned biochemical indices have a negative effect on poultry health.


Subject(s)
Non-alcoholic Fatty Liver Disease , Physiological Phenomena , Animals , Chickens , Homeostasis , Oxidation-Reduction , Glutathione
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047095

ABSTRACT

Many studies have been published in recent years regarding the fact that moderate wine consumption, as a part of a balanced diet can have a beneficial effect on human health. The biologically active components of wine continue to be the subject of intense research today. In this study, the bioactive molecules of Hungarian aszú from the Tokaj wine region were analyzed using high-performance liquid chromatography (HPLC) and investigated in an in vitro model system of endothelial cells induced by bacterial-derived lipopolysaccharide. The HPLC measurements were performed on a reversed phased column with gradient elution. The non-cytotoxic concentration of the active substance was determined based on 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT)-, apoptosis, and necrosis assays. The antioxidant effect of the extract was determined by evaluating its ability to eliminate ROS. The expressions of the interleukin-(IL)1α, IL1-ß, IL-6, and IL-8 pro-inflammatory cytokines and nitric oxide synthase (eNOS) at the mRNA level were evaluated using a quantitative polymerase chain reaction (qPCR). We found that the lipopolysaccharides (LPS)-induced increases in the expressions of the investigated cytokines were significantly suppressed by Hungarian aszú extract, excluding IL-6. In our experimental setup, our treatment had a positive effect on the eNOS expression, which was impaired as a result of the inflammatory manipulation. In our experimental model, the Hungarian aszú extract decreased the LPS-induced increases in the expression of the investigated cytokines and eNOS at the mRNA level, which presumably had a positive effect on the endothelial dysfunction caused by inflammation due to its strong antioxidant and anti-inflammatory effects. Collectively, this research contributes to a more thorough understanding of the bioactive molecules of aszú from the Tokaj wine region.


Subject(s)
Polyphenols , Wine , Humans , Polyphenols/pharmacology , Polyphenols/analysis , Chromatography, High Pressure Liquid , Interleukin-6/analysis , Wine/analysis , Endothelial Cells , Hungary , Lipopolysaccharides/pharmacology , Inflammation/drug therapy , Cytokines/analysis , Plant Extracts/pharmacology , RNA, Messenger/analysis
5.
Dent J (Basel) ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36826189

ABSTRACT

The sour cherry contains anthocyanins, which have bactericide action against some oral bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa). Sour cherry also has antibiofilm action against Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum. Our earlier research proved that chewing sour cherry anthocyanin gum significantly reduces the amount of human salivary alpha-amylase and Streptococcus mutans levels. The microbiota of a toothbrush affects oral health and regular toothbrush change is recommended. A total of 20 healthy participants were selected for the study. We analysed saliva samples with 16S rRNA sequencing to investigate the effect of 2 weeks (daily three times, after main meals) of chewing sour cherry anthocyanin gum-supplemented by toothbrush change in half of our case-control study cohort-after scaling on human oral microbiota. A more stable and diverse microbiome could be observed after scaling by the anthocyanin gum. Significant differences between groups (NBR: not toothbrush changing; BR: toothbrush changing) were evaluated by log2 proportion analysis of the most abundant family and genera. The analysis showed that lower level of some Gram-negative anaerobic (Prevotella melaninogenica, Porphyromonas pasteri, Fusobacterium nucleatum subsp. vincentii) and Gram-positive (Rothia mucilaginosa) bacteria could be observed in the case group (BR), accompanied by build-up of health-associated Streptococcal network connections.

6.
Life (Basel) ; 14(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276259

ABSTRACT

The consumption of artificial and low-calorie sweeteners (ASs, LCSs) is an important component of the Western diet. ASs play a role in the pathogenesis of metabolic syndrome, dysbiosis, inflammatory bowel diseases (IBDs), and various inflammatory conditions. Intestinal nutrient-sensing receptors act as a crosstalk between dietary components, the gut microbiota, and the regulation of immune, endocrinological, and neurological responses. This narrative review aimed to summarize the possible effects of ASs and LCSs on intestinal nutrient-sensing receptors and their related functions. Based on the findings of various studies, long-term AS consumption has effects on the gut microbiota and intestinal nutrient-sensing receptors in modulating incretin hormones, antimicrobial peptides, and cytokine secretion. These effects contribute to the regulation of glucose metabolism, ion transport, gut permeability, and inflammation and modulate the gut-brain, and gut-kidney axes. Based on the conflicting findings of several in vitro, in vivo, and randomized and controlled studies, artificial sweeteners may have a role in the pathogenesis of IBDs, functional bowel diseases, metabolic syndrome, and cancers via the modulation of nutrient-sensing receptors. Further studies are needed to explore the exact mechanisms underlying their effects to decide the risk/benefit ratio of sugar intake reduction via AS and LCS consumption.

7.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012299

ABSTRACT

Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell-cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.


Subject(s)
Occludin , Plant Extracts , Prunus avium , Tight Junctions , Zonula Occludens-1 Protein , Anthocyanins/metabolism , Caco-2 Cells , Humans , Intestinal Mucosa/metabolism , Occludin/genetics , Occludin/metabolism , Plant Extracts/pharmacology , Prunus avium/chemistry , RNA, Messenger/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
8.
PLoS One ; 17(4): e0266447, 2022.
Article in English | MEDLINE | ID: mdl-35395053

ABSTRACT

Spinal deformity is a serious economic and animal welfare problem in intensive fish farming systems, which will be a significant unsolved problem for the fish sector. The aim of this study was to determine the relative expression of genes (Akt1 substrate 1, Calreticulin, Collagen type I alpha 2 chain, Corticotropin-releasing hormone, Chromodomain-Helicase DNA-binding, Growth hormone, Insulin like growth factor 1, Myostatin, Sine oculis-related homeobox 3, Toll-like receptor 2) in different tissues associated with spinal deformity and to determine the macroelement (calcium, magnesium, phosphorus, potassium, sodium, sulfur) and microelement (barium, copper, iron, manganese, strontium, zinc) content of spine in healthy and deformed common carps (Cyprinus carpio) in Hungary. The mRNA levels of the genes were measured in 7 different tissues (abdominal fat, blood, brain, dorsal muscle, genitals, heart, liver) by qRT-PCR. Correlations between gene expression and element content were analyzed by using linear regression and Spearman rank correlation. In a total of 15 cases, we found a statistically significant connection between gene expression in a tissue and the macro- or microelement content of the spine. In these contexts, the genes Akt1 substrate 1 (3), Collagen type I alpha 2 chain (2), Corticotropin-releasing hormone (4), Insulin-like growth factor 1 (4), and Myostatin (2), the tissue's blood (3), brain (6), heart (5), and liver (1), the macroelements sodium (4), magnesium (4), phosphorus (1) and sulfur (2) as well as the microelement iron (4) were involved. We also found statistically significant mRNA level differences between healthy and deformed common carps in tissues that were not directly affected by the deformation. Based on our results, genes regulating the nervous system and growth, elements, and tissues are the most associated components in the phenomenon of spinal deformity. With our study, we wish to give direction to and momentum for the exploration of these complex processes.


Subject(s)
Carps , Animals , Carps/genetics , Collagen Type I , Corticotropin-Releasing Hormone/genetics , Iron , Magnesium , Myostatin , Nervous System , Phosphorus , RNA, Messenger/genetics , Sodium , Sulfur
9.
Saudi J Biol Sci ; 29(1): 630-639, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002460

ABSTRACT

One of the most important issues in improving the competitiveness of the fish production sector is to improve the growth rate of fish. The genetic background to this trait is at present poorly understood. In this study, we compared the relative gene expression levels of the Akt1s1, FGF, GH, IGF1, MSTN, TLR2, TLR4 and TLR5 genes in blood in groups of common carps (Cyprinus carpio), which belonged to different growth types and phenotypes. Fish were divided into groups based on growth rate (normal group: n = 6; slow group: n = 6) and phenotype (scaled group: n = 6; mirror group: n = 6). In the first 18 weeks, we measured significant differences (p < 0.05) between groups in terms of body weight and body length. Over the next 18 weeks, the fish in the slow group showed more intense development. In the same period, the slow group was characterized by lower expression levels for most genes, whereas GH and IGF1 mRNA levels were higher compared to the normal group. We found that phenotype was not a determining factor in differences of relative expression levels of the genes studied.

10.
PLoS One ; 16(4): e0248537, 2021.
Article in English | MEDLINE | ID: mdl-33886562

ABSTRACT

In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics.


Subject(s)
Animal Feed , Carps/microbiology , Dietary Supplements , Phytochemicals , Animal Feed/analysis , Animals , Aquaculture , Dietary Supplements/analysis , Gastrointestinal Microbiome , Intestines/microbiology , Phytochemicals/analysis
11.
mSystems ; 6(2)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653943

ABSTRACT

Effects of nutraceuticals on the intestinal microbiota are receiving increased attention; however, there are few studies investigating their effects on broiler meat production. The aim of this study was to implement feeding strategies and carry out a comprehensive trial examining the interplay between natural biologically active compounds such as carotenoids, anthocyanins, fermentable oligosaccharides, and synbiotics and the gastrointestinal tract microbiota. Our feeding program was applied to an intensive production system with a flock of 1,080 Ross 308 broilers. Aging induced significant changes through the feeding experiment. Nutraceuticals were shown to modulate broiler intestinal diversity and differentially enriched Lactobacillus, Enterococcus, Campylobacter, and Streptococcus in the core microbiome during the different stages of broiler rearing. Additionally, they did not remarkably affect animal growth performance; nevertheless, a positive correlation was found between body weight and Corynebacteriales and Pseudomonadales Furthermore, a diet high in carotenoid, fermentable oligosaccharide, and anthocyanin contents affected the number of beneficial genera such as Faecalibacterium, Lactobacillus, Blautia, and Ruminococcus With this comprehensive trial, we revealed that nutraceuticals induced modulations in broiler gastrointestinal tract microbiota. We believe that plant-derived immunostimulants, recycled from plant food waste products, can supplement antibiotic-free broiler meat production.IMPORTANCE In this trial, nutraceuticals were manufactured from waste products of food industry processing of Hungarian red sweet pepper and sour cherry and incorporated into the diet of poultry to investigate their effects on broilers' growth and the broiler gastrointestinal tract microbiota. To avoid the generation of food waste products, we believe that this approach can be developed into a sustainable, green approach that can be implemented in commercial antibiotic-free poultry to provide safe and high-quality meat.

12.
Biol Trace Elem Res ; 199(2): 732-743, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32447578

ABSTRACT

In present study the effect of iron (Fe) and manganese (Mn) contamination was assessed by modeling a freshwater food web of water, zooplankton (Daphnia pulex), and zebrafish (Danio rerio) under laboratory conditions. Metals were added to the rearing media of D. pulex, and enriched zooplankton was fed to zebrafish in a feeding trial. The elemental analysis of rearing water, zooplankton, and fish revealed significant difference in the treatments compared to the control. In D. pulex the Mn level increased almost in parallel with the dose of supplementation, as well as the Fe level differed statistically. A negative influence of the supplementation on the fish growth was observed: specific growth rate (SGR%) and weight gain (WG) decreased in Fe and Mn containing treatments. The redundancy analysis (RDA) of concentration data showed strong correlation between the rearing water and D. pulex, as well as the prey organism of Fe- and Mn-enriched D. pulex and the predator organism of D. rerio. The bioconcentration factors (BCF) calculated for water to zooplankton further proved the relationship between the Fe and Mn dosage applied in the treatments and measured in D. pulex. Trophic transfer factor (TTF) results also indicate that significant retention of the metals occurred in D. rerio individuals, however, in a much lower extent than in the water to zooplankton stage. Our study suggests that Fe and Mn significantly accumulate in the lower part of the trophic chain and retention is effective through the digestive track of zebrafish, yet no biomagnification occurs. Graphical abstract.


Subject(s)
Daphnia , Zebrafish , Animals , Iron , Manganese , Zooplankton
13.
Nutrients ; 12(11)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147748

ABSTRACT

Diabetes mellitus (DM)-related morbidity and mortality are steadily rising worldwide, affecting about half a billion people worldwide. A significant proportion of diabetic cases are in the elderly, which is concerning given the increasing aging population. Proper nutrition is an important component in the effective management of diabetes in the elderly. A plethora of active substances of plant origin exhibit potency to target the pathogenesis of diabetes mellitus. The nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. In this study, the effect of Hungarian sour cherry, which is rich in anthocyanins, on hyperglycemia-induced endothelial dysfunction was tested using human umbilical cord vein endothelial cells (HUVECs). HUVECs were maintained under both normoglycemic (5 mM) and hyperglycemic (30 mM) conditions with or without two concentrations (1.50 ng/µL) of anthocyanin-rich sour cherry extract. Hyperglycemia-induced oxidative stress and inflammatory response and damaged vasorelaxation processes were investigated by evaluating the level of reactive oxygen species (ROS) and gene expression of four proinflammatory cytokines, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1α (IL-1α), as well as the gene expression of nitric oxide synthase (NOS) endothelin-1 (ET-1) and endothelin-converting enzyme-1 (ECE-1). It was found that hyperglycemia-induced oxidative stress was significantly suppressed by anthocyanin-rich sour cherry extract in a concentration-dependent manner. The gene expression of the tested proinflammatory cytokines increased under hyperglycemic conditions but was significantly reduced by both 1 and 50 ng/µL anthocyanin-rich sour cherry extract. Further, although increased ET-1 and ECE-1 expression due to hyperglycemia was reduced by anthocyanin-rich sour cherry extract, NOS expression was increased by the extract. Collectively, these data suggest that anthocyanin-rich sour cherry extract could alleviate hyperglycemia-induced endothelial dysfunction due to its antioxidant, anti-inflammatory, and vasorelaxant effects.


Subject(s)
Anthocyanins/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Endothelium-Dependent Relaxing Factors/pharmacology , Hyperglycemia/drug therapy , Plant Extracts/pharmacology , Prunus avium , Cell Line , Cytokines/metabolism , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Inflammation , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vasodilation/drug effects
14.
Nutrients ; 12(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32517031

ABSTRACT

Diabetes mellitus-related morbidity and mortality is a rapidly growing healthcare problem, globally. Several nutraceuticals exhibit potency to target the pathogenesis of diabetes mellitus. The antidiabetic effects of compounds of garlic have been extensively studied, however, limited data are available on the biological effects of a certain garlic component, allithiamine. In this study, allithiamine was tested using human umbilical cord vein endothelial cells (HUVECs) as a hyperglycaemic model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometric analysis using antibodies against specific marker proteins including CD31, CD45, CD54, and CD106. The non-cytotoxic concentration of allithiamine was determined based on MTT, apoptosis, and necrosis assays. Subsequently, cells were divided into three groups: incubating with M199 medium as the control; or with 30 mMol/L glucose; or with 30 mMol/L glucose plus allithiamine. The effect of allithiamine on the levels of advanced glycation end-products (AGEs), activation of NF-κB, release of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α, and H2O2-induced oxidative stress was investigated. We found that in the hyperglycaemia-induced increase in the level of AGEs, pro-inflammatory changes were significantly suppressed by allithiamine. However, allithiamine could not enhance the activity of transketolase, but it exerts a potent antioxidant effect. Collectively, our data suggest that allithiamine could alleviate the hyperglycaemia-induced endothelial dysfunction due to its potent antioxidant and anti-inflammatory effect by a mechanism unrelated to the transketolase activity.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Endothelium, Vascular/physiopathology , Garlic/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/physiopathology , Phytotherapy , Thiamine/analogs & derivatives , Cytokines/metabolism , Endothelium, Vascular/metabolism , Glycation End Products, Advanced/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Hyperglycemia/metabolism , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Thiamine/isolation & purification , Thiamine/pharmacology , Thiamine/therapeutic use , Transketolase/metabolism
15.
Animals (Basel) ; 10(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098265

ABSTRACT

This study was conducted to investigate the effect of carotenoid, oligosaccharide and anthocyanin supplementation in broiler diets under Escherichia coli lipopolysaccharide (LPS) challenge. Ross 308 chickens were fed 5 diets: basal diet (control diet), diet supplemented with ß-glucan in 0.05% (positive control) and diets with 0.5% carotenoid-, oligosaccharide- or anthocyanin contents. On the 26th days of age, chickens were challenged intraperitoneally 2 mg LPS per kg of body weight. 12 h after injection, birds were euthanized, then spleen and ileum samples were collected. LPS induced increased relative mRNA expression of splenic (p = 0.0445) and ileal (p = 0.0435) interleukin-1ß (IL-1ß), which was lower in the spleen in carotenoid (p = 0.0114), oligosaccharide (p = 0.0497) and anthocyanin (p = 0.0303)-treated chickens compared to LPS-injected control birds. Dietary supplementation of carotenoids also decreased relative gene expression of splenic interleukin-6 (IL-6) (p = 0.0325). In the ileum, ß-glucan supplementation showed lower relative mRNA expression of toll-like receptor 5 (TLR-5) (p = 0.0387) compared to anthocyanin treatment. Gene expression of both splenic and ileal interferon-α (IFN-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4) and toll-like receptor 5 (TLR-5) were not influenced by dietary supplements. In conclusion, carotenoids, oligosaccharides and anthocyanins could partially mitigate the immune stress caused by LPS challenge. All of the compounds impacted longer villus height (p < 0.0001), villus height:crypt depth ratios were higher after ß-glucan (p < 0.0001) and anthocyanin (p = 0.0063) supplementations and thickened mucosa was observed in ß-glucan (p < 0.0001), oligosaccharide (p < 0.0001) and anthocyanin (p = 0.048) treatments. All of these findings could represent a more effective absorption of nutrients.

16.
Sci Rep ; 10(1): 3419, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32099013

ABSTRACT

Here, we developed protocols to improve sensitivity, rigor and comparability of 16S rRNA gene amplification-based next-generation sequencing (NGS) results. A thorough study was performed by evaluating extraction efficiency with respect to the yield, purity, fragmentation of the purified DNA, and sequencing metrics considering the number of quality reads, amplicon sequence variants (ASVs), community structure and biodiversity. We identified batch-effects that significantly bias broiler gastrointestinal tract (GIT) community compositions and made recommendations to improve sensitivity, consistency, and cross-study comparability. We found that the purity of the extracted nucleic acid had a strong effect on the success rate of downstream library preparations. The preparation of stool bacterial suspensions from feces showed a significant positive influence on community biodiversity by enriching Gram-negative bacteria and cataloguing low abundant taxa with greater success than direct processing of fecal material. Applications relying on the automated Roche MagNa Pure 24 magnetic-bead based method provided results with high consistency therefore it seems to be the optimal choice in large-scale studies for investigating broiler GIT microbiota.


Subject(s)
Chickens/microbiology , DNA, Bacterial , Gastrointestinal Microbiome , Gram-Negative Bacteria , Metagenome , Metagenomics , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics
17.
Molecules ; 24(19)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546579

ABSTRACT

The anthocyanin content of Hungarian sour cherry is remarkable based on our preliminary investigations. Nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. The objective of this work was to investigate the the effect of purified sour cherry extract using human umbilical cord vein endothelial cells (HUVECs) as the inflammatory model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometry. The optimal concentration range of sour cherry extract was selected based on MTT, apoptosis, and necrosis assays. Cells were divided into three groups, incubating with M199 medium as control, or with lipopolysaccharide (LPS) or with LPS plus anthocyanin extract (ACE). The effect of sour cherry extract on oxidative stress, pro-inflammatory factors, and arachidonic pathway was investigated. An amount of 50 µg/mL ACE (ACE50) was able to increase the level of glutathione and decrease the ROS, thereby improving the unbalanced redox status in inflammation. ACE50 lowered pro-inflammatory cytokine levels including Interleukin-6 (IL-6), regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α). ACE50 affected the arachidonic acid pathway by reducing the LPS-induced enzyme expression (cyclooxygenase-1, cyclooxygenase-2, and prostacyclin synthase). The extract under investigation seems to have a pleiotropic effect including anti-oxidative, anti-inflammatory, hemostatic, and vasoactive effects. Our results indicate that purified sour cherry extract could reduce the LPS-induced inflammatory response, thereby improving endothelial dysfunction.


Subject(s)
Anthocyanins/pharmacology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Plant Extracts/pharmacology , Prunus avium/chemistry , Anthocyanins/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha/metabolism
18.
Nutrients ; 11(9)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438590

ABSTRACT

Male C57BL/6J mice were used to determine the possible therapeutic effects of our previously described tart cherry extract in a chronic obesity mouse model on metabolic parameters, glucose tolerance, inflammatory mediators, and antioxidant capacity. The control group received standard mouse chow, and the high fat control group was switched to a high fat diet and tap water supplemented with 5% sucrose. The high fat + anthocyanin group received the high fat and sucrose diet, but received the anthocyanin-rich tart cherry extract dissolved in their drinking water. After six weeks, an oral glucose tolerance test was performed, and the water-soluble antioxidant capacity (ACW), superoxide dismutase (SOD) activity, and the plasma levels of insulin, C-peptide, leptin, IL-6, MCP-1, adiponectin and resistin were measured. The high fat diet increased body weight, reduced glucose tolerance, and caused an elevation in leptin, IL-6, MCP-1, and resistin levels. Furthermore, antioxidant capacity was decreased with a significant elevation of SOD activity. Anthocyanin treatment failed to reverse the effects of the high fat diet on body weight and glucose tolerance, but significantly reduced the leptin and IL-6 levels. The tart cherry extract also made a significant enhancement in antioxidant capacity and SOD activity. Our results show that chronic anthocyanin intake has a potential to enhance redox status and alleviate inflammation associated with obesity.


Subject(s)
Anthocyanins/chemistry , Diet, High-Fat/adverse effects , Inflammation/metabolism , Obesity/chemically induced , Plant Extracts/pharmacology , Prunus avium/chemistry , Adipokines , Adiponectin , Animals , Antioxidants , Diabetes Mellitus, Type 2/chemically induced , Glucose Tolerance Test , Humans , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Resistin , Superoxide Dismutase
19.
Biomed Res Int ; 2019: 7213913, 2019.
Article in English | MEDLINE | ID: mdl-31080828

ABSTRACT

Fenugreek is known since ancient times as a traditional herbal medicine of its multiple beneficial effects. Fenugreek's most studied and employed effect is its hypoglycemic property, but it can also be useful for the treatment of certain thyroid disorders or for the treatment of anorexia. The regulation of glucose homeostasis is a complex mechanism, dependent on the interaction of different types of hormones and neurotransmitters or other compounds. For the study of how diosgenin and fenugreek seeds modify insulin sensitivity, we used a rat insulin resistance model induced by high-fat diet. Diosgenin in three different doses (1mg/bwkg, 10mg/bwkg, and 50 mg/bwkg, respectively) and fenugreek seed (0.2 g/bwkg) were administered orally for 6 weeks. Insulin sensitivity was determined by hyperinsulinemic euglycemic glucose clamp method. Our research group found that although glucose infusion rate was not significantly modified in either group, the increased insulin sensitivity index and high metabolic clearance rate of insulin found in the 1 mg/kg diosgenin and the fenugreek seed treated group suggested an improved peripheral insulin sensitivity. Results from the 10 mg/kg diosgenin group, however, suggest a marked insulin resistance. Fenugreek seed therapy results on the investigated anabolic hormones support the theory that, besides insulin and gastrointestinal peptides, the hypothalamic-hypopituitary axis regulated hormones synchronized action with IGF-1 also play an important role in the maintaining of normal glucose levels. Both diosgenin and fenugreek seeds are capable of interacting with substrates of the above-mentioned regulatory mechanisms, inducing serious hormonal disorders. Moreover, fenugreek seeds showed the ability to reduce the thyroid hormone levels at the periphery and to modify the T4/T3 ratio. It means that in healthy people this effect could be considered a severe side effect; however, in hypothyroidism this effect represents a possibility of alternative natural therapy.


Subject(s)
Diosgenin/pharmacology , Herbal Medicine , Insulin Resistance/physiology , Plant Extracts/pharmacology , Trigonella/chemistry , Administration, Oral , Animals , Diet, High-Fat , Diosgenin/administration & dosage , Diosgenin/therapeutic use , Glucose , Growth Hormone/analysis , Insulin , Insulin-Like Growth Factor I/analysis , Male , Models, Animal , Plant Extracts/therapeutic use , Plants, Medicinal , Rats , Rats, Wistar , Thyroid Hormones
20.
Heliyon ; 4(12): e00997, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30582034

ABSTRACT

A natural fat-soluble thiamine derivative, namely N-[(4-amino-2-methylpyrimidin-5-yl)methyl]-N-[(2E)-5-hydroxy-3-(prop-2-en-1-yldisulfanyl)pent-2-en-2-yl]formamide (allithiamine) has been identified only in garlic (Allium sativum) until now. Hungarian red sweet pepper (Capsicum annuum) was found as a new source of allithiamine. Extraction procedure and analytical method were developed for the isolation of allithiamine and a chemical synthesis of the compound was also developed. First solid-liquid extraction was performed with 96 % ethanol to isolate allithiamine from pepper seeds. Thereafter, solid phase extraction was applied from ethanolic extract using C18 cartridge to concentrate and purify samples for further analysis. The structure of the synthesized and the isolated compounds was verified by reverse phase HPLC, HPLC-MS, MALD-TOF MS and NMR. Furthermore, effect of allithiamine was investigated on streptozotocin-induced diabetic mice with neuropathy. The results show that neuropathic pain sensation is improved by allithiamine treatment similarly to benfothiamine.

SELECTION OF CITATIONS
SEARCH DETAIL
...