Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Article in English | MEDLINE | ID: mdl-35879361

ABSTRACT

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy/methods , Organoids/pathology
2.
Invest Ophthalmol Vis Sci ; 61(5): 49, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32460311

ABSTRACT

Purpose: The functional interaction between photoreceptors and retinal pigment epithelium (RPE) cells is essential for vision. Phagocytosis of photoreceptor outer segments (POSs) by the RPE follows a circadian pattern; however, it remains unknown whether other RPE processes follow a daily rhythm. Therefore, our aim was to identify RPE processes following a daily rhythm. Methods: Murine RPE was isolated at Zeitgeber time (ZT) 0, 2, 4, 9, 14, and 19 (n = 5 per time point), after which RNA was isolated and sequenced. Genes with a significant difference in expression between time points (P < 0.05) were subjected to EnrichR pathway analysis to identify daily rhythmic processes. Results: Pathway enrichment revealed 13 significantly enriched KEGG pathways (P < 0.01), including the metabolic pathway (P = 0.002821). Analysis of the metabolic pathway differentially expressed genes revealed that genes involved in adenosine triphosphate production, glycolysis, glycogenolysis, and glycerophospholipid were low at ZT0 (light onset) and high at ZT19 (night). Genes involved in fatty acid degradation and cholesterol synthesis were high at light onset and low at night. Conclusions: Our transcriptome data suggest that the highest energy demand of RPE cells is at night, whereas POS phagocytosis and degradation take place in the morning. Furthermore, we identified genes involved in fatty acid and glycerophospholipid synthesis that are upregulated at night, possibly playing a role in generating building blocks for membrane synthesis.


Subject(s)
Circadian Rhythm , Energy Metabolism/genetics , Gene Expression Regulation , Retinal Pigment Epithelium/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Random Allocation
3.
Exp Eye Res ; 193: 107985, 2020 04.
Article in English | MEDLINE | ID: mdl-32092287

ABSTRACT

Strong communication and interaction between the retinal pigment epithelium (RPE) and the photoreceptor (PR) cells is essential for vision. RPE cells are essential for supporting and maintaining PR cells by transporting nutrients, waste products and ions, and phagocytosing photoreceptor outer segments (POS). POS phagocytosis follows a circadian pattern, taking place in the morning in human, mice and other organisms. However, it remains unknown whether other RPE processes follow a daily rhythm. To study the daily rhythm of RPE cells, we isolated murine RPE cells at six different time points during a 24 h period, after which RNA was isolated and sequenced. Murine RPE flatmounts were isolated at four different time points to study daily rhythm in protein abundance and localisation. EnrichR pathway analysis resulted in 13 significantly-enriched KEGG pathways (p < 0.01) of which seven showed a large number of overlapping genes. Several genes were involved in intracellular trafficking, possibly playing a role in nutrient transport, POS phagocytosis or membrane protein trafficking, with different expression patterns during the day-night cycle. Other genes were involved in actin cytoskeleton building, remodelling and crosslinking and showed a high expression in the morning, suggesting actin cytoskeleton remodelling at this time point. Finally, tight junction proteins Cldn2 and Cldn4 showed a difference in RNA and protein expression and tight junction localisation over time. Our study suggests that several important processes in the RPE follow a day-night rhythm, including intracellular trafficking, and processes involving the actin cytoskeleton and tight junctions. The differential protein localisation of Cldn2 in the RPE during the day-night cycle suggest that Cldn2 may facilitate paracellular water and sodium transport during the day.


Subject(s)
Circadian Rhythm/physiology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/metabolism , Tight Junction Proteins/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Retinal Pigment Epithelium/cytology , Tight Junction Proteins/biosynthesis
4.
Hum Mol Genet ; 27(12): 2138-2153, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29659809

ABSTRACT

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


Subject(s)
Epilepsy/genetics , Homeodomain Proteins/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Contracture , Disease Models, Animal , Epilepsy/physiopathology , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Gene Expression Regulation, Developmental , Humans , Infant , Intellectual Disability , Male , Mice , Mutation , Neurodevelopmental Disorders/physiopathology , Peptides/genetics , Prosencephalon/physiopathology , Spastic Paraplegia, Hereditary , Transcriptome/genetics , Young Adult
5.
PLoS Genet ; 13(7): e1006886, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28704368

ABSTRACT

Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Duplication/genetics , Cognition , Intellectual Disability/genetics , Nuclear Proteins/genetics , Animals , Body Weight , Brain/metabolism , Brain/ultrastructure , Chromosome Deletion , Chromosome Structures/genetics , Chromosome Structures/metabolism , Chromosomes, Human, Pair 17/genetics , DNA Copy Number Variations , Disease Models, Animal , Epigenesis, Genetic , Female , Gene Deletion , Gene Rearrangement , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/genetics , Nuclear Proteins/metabolism , Synaptic Transmission/genetics , Up-Regulation
6.
Neuron ; 91(2): 341-55, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27373831

ABSTRACT

Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Homeostasis/physiology , Neuronal Plasticity/physiology , Synapses/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 9/metabolism , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/physiopathology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/physiopathology , Hippocampus/metabolism , Homeostasis/genetics , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , Methylation , Mice, Transgenic , Neuronal Plasticity/genetics , Patch-Clamp Techniques/methods
7.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26376863

ABSTRACT

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Subject(s)
Cognition Disorders/etiology , Drosophila Proteins/genetics , Membrane Proteins/genetics , Nerve Degeneration/etiology , Proton-Translocating ATPases/genetics , Receptors, Cell Surface/genetics , Animals , Brain/metabolism , Brain/physiopathology , Cognition Disorders/genetics , Cognition Disorders/physiopathology , Disease Models, Animal , Drosophila , Female , Gene Knockdown Techniques , Intellectual Disability/genetics , Male , Mice , Nerve Degeneration/pathology , Neurons/metabolism , Neurons/physiology , Neurons/ultrastructure , Parkinsonian Disorders/genetics , Synapses/metabolism , Synapses/physiology , Synapses/ultrastructure
8.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Article in English | MEDLINE | ID: mdl-22568606

ABSTRACT

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Subject(s)
Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Genome, Bacterial , Metagenome , Nitrogen Cycle , Planctomycetales/genetics , Planctomycetales/metabolism , Aquatic Organisms/classification , Nitrite Reductases/metabolism , Oceans and Seas , Oxidation-Reduction , Planctomycetales/classification , Quaternary Ammonium Compounds/metabolism , RNA, Ribosomal, 16S/genetics , Water Microbiology
9.
Front Microbiol ; 3: 307, 2012.
Article in English | MEDLINE | ID: mdl-22934093

ABSTRACT

Bacteria capable of anaerobic oxidation of ammonium (anammox) form a deep branching clade within the Planctomycetes. Although the core metabolic pathway of anammox bacteria is largely resolved, many questions still remain. Data mining of the (meta) genomes of anammox bacteria is a powerful method to address these questions or identify targets for further study. The availability of high quality reference data greatly aids such analysis. Currently, only a single "near complete" (∼98%) reference genome of an anammox bacterium is available; that of model organism "Candidatus Kuenenia stuttgartiensis." Here we present a comparative genomic analysis of two "Ca. K. stuttgartiensis" anammox bacteria that were independently enriched. The two anammox bacteria used are "Ca. K. stuttgartiensis" RU1, which was originally sequenced for the reference genome in 2002 and "Ca. K. stuttgartiensis" CH1, independently enriched from a Chinese wastewater treatment plant. The two different "Ca. Kuenenia" bacteria have a very high sequence identity (>99% at nucleotide level) over the entire genome, but 31 genomic regions (average size 11 kb) were absent from strain CH1 and 220 kb of sequence was unique to the CH1 assembly. The high sequence homology between these two bacteria indicates that mobile genetic elements are the main source of variation between these geographically widely separated strains. Comparative analysis of the RU1 and CH1 assemblies led to the identification of 49 genes absent from the reference genome. These include a leucyl-tRNA-synthase, the absence of which led to the estimation of the 98% completeness of the reference genome. Finally, a set of 244 genes was present in the reference genome, but absent in the RU1 and CH1 assemblies. These could represent either identical gene duplicates or assembly errors in the published genome. We are confident that this analysis has further improved the most complete available high quality reference genome of an anammox bacterium and will aid further studies on this globally important group of organisms.

10.
J Bacteriol ; 194(14): 3729-30, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22740660

ABSTRACT

The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.


Subject(s)
Genome, Bacterial , Geological Phenomena , Verrucomicrobia/genetics , Molecular Sequence Data
11.
Proc Natl Acad Sci U S A ; 109(21): 8161-6, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22570494

ABSTRACT

rRNA genes (rDNA) exist in two distinct epigenetic states, active promoters being unmethylated and marked by euchromatic histone modifications, whereas silent ones are methylated and exhibit heterochromatic features. Here we show that the nucleosome remodeling and deacetylation (NuRD) complex establishes a specific chromatin structure at rRNA genes that are poised for transcription activation. The promoter of poised rRNA genes is unmethylated, associated with components of the preinitiation complex, marked by bivalent histone modifications and covered by a nucleosome in the "off" position, which is refractory to transcription initiation. Repression of rDNA transcription in growth-arrested and differentiated cells correlates with elevated association of NuRD and increased levels of poised rRNA genes. Reactivation of transcription requires resetting the promoter-bound nucleosome into the "on" position by the DNA-dependent ATPase CSB (Cockayne syndrome protein B). The results uncover a unique mechanism by which ATP-dependent chromatin remodeling complexes with opposing activities establish a specific chromatin state and regulate transcription.


Subject(s)
Chromatin/metabolism , Genes, rRNA/genetics , Histones/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Nucleosomes/metabolism , Transcriptional Activation/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Differentiation/physiology , Chromatin/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic/physiology , Histones/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , NIH 3T3 Cells , Nucleosomes/genetics , Poly-ADP-Ribose Binding Proteins , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA, Ribosomal/genetics , Transcription Factors
12.
Cell Host Microbe ; 11(1): 7-18, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22264509

ABSTRACT

A major virulence factor of the malaria parasite Plasmodium falciparum is erythrocyte membrane protein 1 (PfEMP1), a variant protein expressed on the infected erythrocyte surface. PfEMP1 is responsible for adherence of infected erythrocytes to the endothelium and plays an important role in pathogenesis. Mutually exclusive transcription and switched expression of one of 60 var genes encoding PfEMP1 in each parasite genome provides a mechanism for antigenic variation. We report the identification of a parasite protein, designated PfSET10, which localizes exclusively to the perinuclear active var gene expression site. PfSET10 is a histone 3 lysine 4 methyltransferase required to maintain the active var gene in a poised state during division for reactivation in daughter parasites, and as such is required for P. falciparum antigenic variation. PfSET10 likely maintains the transcriptionally permissive chromatin environment of the active var promoter and thus retains memory for heritable transmission of epigenetic information during parasite division.


Subject(s)
Cell Division , DNA, Protozoan/metabolism , Gene Expression , Histone-Lysine N-Methyltransferase/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/physiology , Protozoan Proteins/genetics , Antigenic Variation , Epigenesis, Genetic , Protozoan Proteins/metabolism
13.
J Bacteriol ; 193(17): 4438-46, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21725016

ABSTRACT

Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in batch and chemostat cultures demonstrated that CO(2) is the sole carbon source for growth of strain SolV. In the presence of CH(4), CO(2) concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO(2)concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a (13)C stable-isotope method was about 70 nmol CO(2) fixed · min(-1)· mg of protein(-1). An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.


Subject(s)
Bacteria/growth & development , Bacteria/genetics , Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Ribulose-Bisphosphate Carboxylase/metabolism , Autotrophic Processes , Bacteria/enzymology , Bacterial Proteins/genetics , Carbon/metabolism , Electrophoresis, Polyacrylamide Gel , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Immunoblotting , Phylogeny
14.
BMC Evol Biol ; 11: 208, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21756361

ABSTRACT

BACKGROUND: Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. RESULTS: We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. CONCLUSIONS: These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.


Subject(s)
Chordata/classification , Chordata/genetics , Evolution, Molecular , Genetic Variation , Histones/genetics , Amino Acid Sequence , Animals , Female , Histones/chemistry , Male , Molecular Sequence Data , Phylogeny , Sequence Alignment
15.
Biochim Biophys Acta ; 1812(8): 818-23, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20970499

ABSTRACT

The nuclear receptor superfamily consists of DNA binding transcription factors that are involved in regulating a wide variety of processes such as metabolism, development, reproduction, and immune responses. Upon binding, nuclear receptors modulate transcription through affecting the local chromatin environment via recruitment of various coregulatory proteins. The recent development of new high-throughput sequencing methods allowed for the first time the comprehensive examination of nuclear receptor action in the context of the epigenome. Here, we discuss how recent genome-wide analyses have provided important new insights on the interplay of nuclear receptors and the epigenome in health and disease. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Subject(s)
Epigenomics , Genome , Receptors, Cytoplasmic and Nuclear/genetics , Binding Sites , Chromatin/metabolism , Chromatin Immunoprecipitation , Gene Expression Profiling , Humans , Neoplasms/genetics , Transcription, Genetic
16.
Cell ; 142(6): 967-80, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20850016

ABSTRACT

Trimethyl-lysine (me3) modifications on histones are the most stable epigenetic marks and they control chromatin-mediated regulation of gene expression. Here, we determine proteins that bind these marks by high-accuracy, quantitative mass spectrometry. These chromatin "readers" are assigned to complexes by interaction proteomics of full-length BAC-GFP-tagged proteins. ChIP-Seq profiling identifies their genomic binding sites, revealing functional properties. Among the main findings, the human SAGA complex binds to H3K4me3 via a double Tudor-domain in the C terminus of Sgf29, and the PWWP domain is identified as a putative H3K36me3 binding motif. The ORC complex, including LRWD1, binds to the three most prominent transcriptional repressive lysine methylation sites. Our data reveal a highly adapted interplay between chromatin marks and their associated protein complexes. Reading specific trimethyl-lysine sites by specialized complexes appears to be a widespread mechanism to mediate gene expression.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Histone Code , Gene Expression Regulation , Genome-Wide Association Study , HeLa Cells , Histone Acetyltransferases/metabolism , Humans , Lysine/metabolism , Mass Spectrometry , Methylation , Proteomics/methods
17.
FEBS Lett ; 584(12): 2662-9, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20388510

ABSTRACT

Acute myeloid leukemia (AML) associated translocations often cause gene fusions that encode oncofusion proteins. Although many of the breakpoints involved in chromosomal translocations have been cloned, in most cases the role of the chimeric proteins in tumorigenesis is not elucidated. Here we will discuss the fusion proteins of the 4 most common translocations associated with AML as well as the common molecular mechanisms that these four and other fusion proteins utilize to transform progenitor cells. Intriguingly, although the individual partners within the fusion proteins represent a wide variety of cellular functions, at the molecular level many commodities can be found.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Cell Transformation, Neoplastic/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Humans , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transcription, Genetic , Translocation, Genetic
18.
Cell Mol Life Sci ; 67(4): 611-28, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19936620

ABSTRACT

Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus-specific transcription. The GCN5 HAT was identified as a subunit of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) multiprotein complex. Vertebrate cells express a second HAT, PCAF, that is 73% identical to GCN5. Here, we report the characterization of the mammalian ATAC (Ada-Two-A-Containing) complexes containing either GCN5 or PCAF in a mutually exclusive manner. In vitro ATAC complexes acetylate lysine 14 of histone H3. Moreover, ATAC- or SAGA-specific knock-down experiments suggest that both ATAC and SAGA are involved in the acetylation of histone H3K9 and K14 residues. Despite their catalytic similarities, SAGA and ATAC execute their coactivator functions on distinct sets of inducible target genes. Interestingly, ATAC strongly influences the global phosphorylation level of histone H3S10, suggesting that in mammalian cells a cross-talk exists linking ATAC function to H3S10 phosphorylation.


Subject(s)
Gene Expression Regulation , Histone Acetyltransferases/metabolism , Multienzyme Complexes/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Catalysis , Drosophila , Gene Knockdown Techniques , HeLa Cells , Histone Acetyltransferases/genetics , Histones/metabolism , Humans , Multienzyme Complexes/genetics , Phosphorylation , p300-CBP Transcription Factors/genetics
19.
Cell ; 131(1): 58-69, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17884155

ABSTRACT

Trimethylation of histone H3 at lysine 4 (H3K4me3) is regarded as a hallmark of active human promoters, but it remains unclear how this posttranslational modification links to transcriptional activation. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic screening we show that the basal transcription factor TFIID directly binds to the H3K4me3 mark via the plant homeodomain (PHD) finger of TAF3. Selective loss of H3K4me3 reduces transcription from and TFIID binding to a subset of promoters in vivo. Equilibrium binding assays and competition experiments show that the TAF3 PHD finger is highly selective for H3K4me3. In transient assays, TAF3 can act as a transcriptional coactivator in a PHD finger-dependent manner. Interestingly, asymmetric dimethylation of H3R2 selectively inhibits TFIID binding to H3K4me3, whereas acetylation of H3K9 and H3K14 potentiates TFIID interaction. Our experiments reveal crosstalk between histone modifications and the transcription factor TFIID. This has important implications for regulation of RNA polymerase II-mediated transcription in higher eukaryotes.


Subject(s)
Gene Expression Regulation , Histones/metabolism , Lysine/metabolism , Nucleosomes/metabolism , Transcription Factor TFIID/metabolism , Acetylation , Amino Acid Sequence , Animals , HeLa Cells , Histones/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Macromolecular Substances/metabolism , Methylation , Mice , Molecular Sequence Data , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factor TFIID/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc Fingers
20.
Mol Oncol ; 1(2): 138-43, 2007 Sep.
Article in English | MEDLINE | ID: mdl-19383291

ABSTRACT

The estrogen receptor (ER) is a ligand inducible transcription factor that regulates a large number of target genes. These targets are particularly relevant in breast cancer, where the sensitivity of the tumor to estrogens determines whether the patients can be treated with endocrine therapy such as tamoxifen. Identifying genomic ER targets is a daunting task. Quantifying expression levels of suspected target genes after estradiol stimulation or, more recently, using expression microarrays to this effect will reveal which genes are regulated by estradiol, however, without discriminating between direct and indirect targets. The identification of the palindromic sequence that defines the estrogen responsive element (ERE) allows for the in silico discovery of putative ER targets in the genome. However the ER can also bind imperfect EREs and half sites, and can bind indirectly via other factors. Chromatin immunoprecipitation (ChIP) can yield all ER genomic target sites. Coupling of ChIP with genome-wide tiling arrays allows for the genome-wide unbiased identification of direct ER target sequences.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Genome, Human , Neoplasm Proteins/biosynthesis , Receptors, Estrogen/metabolism , Response Elements , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Estradiol/pharmacology , Estrogens/pharmacology , Female , Humans , Tamoxifen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...