Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35573857

ABSTRACT

Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.

2.
Article in English | MEDLINE | ID: mdl-31093520

ABSTRACT

We investigate the use of Cu1-x Zn x Fe2O4 ferrites (0.60 < x < 0.76) as potential sensors for magnetic- resonance-imaging thermometry. Samples are prepared by a standard ceramic technique. Their structural and magnetic properties are determined using x-ray diffraction, scanning electron microscopy, super-conducting quantum-interference device magnetometry, and Mossbauer and 3-T nuclear-magnetic-resonance spectroscopies. We use the mass magnetization of powdered ferrites and transverse relaxivity r*2 of water protons in Ringer's-solution-based agar gels with embedded micron-sized particles to determine the best composition for magnetic-resonance-imaging (MRI) temperature sensors in the (280-323)-K range. A preclinical 3-T MRI scanner is employed to acquire T*2 weighted temperature-dependent images. The brightness of the MRI images is cross-correlated with the temperature of the phantoms, which allows for a temperature determination with approximately 1°C accuracy. We determine that the composition of 0.65 < x < 0.70 is the most suitable for MRI thermometry near human body temperature.

3.
Nat Commun ; 7: 12415, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27503610

ABSTRACT

Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

4.
Phys Med Biol ; 56(13): 3731-48, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21628780

ABSTRACT

The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.


Subject(s)
Inhalation , Krypton/chemistry , Lung/physiology , Magnetic Resonance Spectroscopy/methods , Animals , Isotopes , Male , Models, Biological , Oxygen/chemistry , Pulmonary Alveoli/physiology , Pulmonary Ventilation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...