Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Contrast Media Mol Imaging ; 2021: 6641384, 2021.
Article in English | MEDLINE | ID: mdl-34220380

ABSTRACT

Objective: Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an important role in treatment resistance and disease recurrence. The purpose of this study was to investigate if nanoradiomics (radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden. Materials and Methods: In vivo studies were performed in transgenic mouse models of neuroblastoma with low (N = 11) and high (N = 10) tumor-associated macrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs). RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using the Kruskal-Wallis test. Results: N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences (p > 0.05) in tumor volume between low and high TAM tumors. Tumor CT attenuation was not significantly different (p > 0.05) between low and high TAM tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated (p < 0.002) low TAM and high TAM tumors. The RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold cross-validation. Conclusions: Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.


Subject(s)
Contrast Media/pharmacology , Nanoparticles/chemistry , Neuroblastoma/diagnostic imaging , Tomography, X-Ray Computed , Animals , Contrast Media/chemistry , Humans , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacology , Machine Learning , Mice , Mice, Transgenic , Neuroblastoma/pathology , Radiometry , Tumor Burden/radiation effects , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Tumor-Associated Macrophages
3.
Sci Rep ; 10(1): 16185, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999398

ABSTRACT

In these preclinical studies, we describe ADx-001, an Aß-targeted liposomal macrocyclic gadolinium (Gd) imaging agent, for MRI of amyloid plaques. The targeting moiety is a novel lipid-PEG conjugated styryl-pyrimidine. An MRI-based contrast agent such as ADx-001 is attractive because of the lack of radioactivity, ease of distribution, long shelf life, and the prevalence of MRI scanners. Dose-ranging efficacy studies were performed on a 1 T MRI scanner using a transgenic APP/PSEN1 mouse model of Alzheimer's disease. ADx-001 was tested at 0.10, 0.15, and 0.20 mmol Gd/kg. Gold standard post-mortem amyloid immunostaining was used for the determination of sensitivity and specificity. ADx-001 toxicity was evaluated in rats and monkeys at doses up to 0.30 mmol Gd/kg. ADx-001 pharmacokinetics were determined in monkeys and its tissue distribution was evaluated in rats. ADx-001-enhanced MRI demonstrated significantly higher (p < 0.05) brain signal enhancement in transgenic mice relative to wild type mice at all dose levels. ADx-001 demonstrated high sensitivity at 0.20 and 0.15 mmol Gd/kg and excellent specificity at all dose levels for in vivo imaging of ß amyloid plaques. ADx-001 was well tolerated in rats and monkeys and exhibited the slow clearance from circulation and tissue biodistribution typical of PEGylated nanoparticles.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Contrast Media/administration & dosage , Magnetic Resonance Imaging/methods , Plaque, Amyloid/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Contrast Media/pharmacokinetics , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Male , Mice , Mice, Transgenic , Peptide Fragments/metabolism , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Presenilin-1/genetics , Rats , Tissue Distribution
4.
Sci Adv ; 6(28): eaba6156, 2020 07.
Article in English | MEDLINE | ID: mdl-32832602

ABSTRACT

Immunotherapies, including cell-based therapies, targeting the tumor microenvironment (TME) result in variable and delayed responses. Thus, it has been difficult to gauge the efficacy of TME-directed therapies early after administration. We investigated a nano-radiomics approach (quantitative analysis of nanoparticle contrast-enhanced three-dimensional images) for detection of tumor response to cellular immunotherapy directed against myeloid-derived suppressor cells (MDSCs), a key component of TME. Animals bearing human MDSC-containing solid tumor xenografts received treatment with MDSC-targeting human natural killer (NK) cells and underwent nanoparticle contrast-enhanced computed tomography (CT) imaging. Whereas conventional CT-derived tumor metrics were unable to differentiate NK cell immunotherapy tumors from untreated tumors, nano-radiomics revealed texture-based features capable of differentiating treatment groups. Our study shows that TME-directed cellular immunotherapy causes subtle changes not effectively gauged by conventional imaging metrics but revealed by nano-radiomics. Our work provides a method for noninvasive assessment of TME-directed immunotherapy potentially applicable to numerous solid tumors.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Animals , Humans , Immunotherapy/methods , Killer Cells, Natural , Myeloid-Derived Suppressor Cells/pathology , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/therapy , Tumor Microenvironment/physiology
5.
Sci Rep ; 9(1): 18707, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822711

ABSTRACT

Non-invasive methods for estimating placental fractional blood volume (FBV) are of great interest for characterization of vascular perfusion in placentae during pregnancy to identify placental insufficiency that may be indicative of local ischemia or fetal growth restriction (FGR). Nanoparticle contrast-enhanced magnetic resonance imaging (CE-MRI) may enable direct placental FBV estimation and may provide a reliable, 3D alternative to assess maternal-side placental perfusion. In this pre-clinical study, we investigated if placental FBV at 14, 16, and 18 days of gestation could be estimated through contrast-enhanced MRI using a long circulating blood-pool liposomal gadolinium contrast agent that does not penetrate the placental barrier. Placental FBV estimates of 0.47 ± 0.06 (E14.5), 0.50 ± 0.04 (E16.5), and 0.52 ± 0.04 (E18.5) were found through fitting pre-contrast and post-contrast T1 values in placental tissue using a variable flip angle method. MRI-derived placental FBV was validated against nanoparticle contrast-enhanced computed tomography (CE-CT) derived placental FBV, where signal is directly proportional to the concentration of iodine contrast agent. The results demonstrate successful estimation of the placental FBV, with values statistically indistinguishable from the CT derived values.


Subject(s)
Contrast Media/metabolism , Placenta/blood supply , Placenta/diagnostic imaging , Animals , Blood Volume , Female , Gadolinium , Liposomes , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Nanoparticles , Placenta/metabolism , Pregnancy
6.
Placenta ; 77: 1-7, 2019 02.
Article in English | MEDLINE | ID: mdl-30827350

ABSTRACT

INTRODUCTION: Visualization of the retroplacental clear space (RPCS) may provide critical insight into the development of abnormally invasive placenta (AIP). In this pre-clinical study, we characterized the appearance of the RPCS on magnetic resonance imaging (MRI) during the second half of gestation using a liposomal gadolinium contrast agent (liposomal-Gd). MATERIALS AND METHODS: Studies were performed in fifteen pregnant C57BL/6 mice at 10, 12, 14, 16, and 18 days of gestation. MRI was performed on a 1T permanent magnet scanner. Pre-contrast and post-contrast images were acquired using T1-weighted gradient-recalled echo (T1w-GRE) and T2-weighted fast spin echo (T2w-FSE) sequences. Animals were euthanized after imaging and feto-placental units harvested for histological examination. Visualization of the RPCS was scored by a maternal-fetal radiologist and quantified by measuring the contrast-to-noise ratio (CNR) on T1w images. Feto-placental features were segmented for analysis of volumetric changes during gestation. RESULTS: Contrast-enhanced T1w images enabled the visualization of structural changes in placental development between days 10-18 of gestation. Although the placental margin on the fetal side was clearly visible at all time points, the RPCS was partially visible at day 10 of gestation, and clearly visible by day 12. Hematoxylin and eosin (H&E) staining of the placental tissue corroborated MRI findings of structural and morphological changes in the placenta. CONCLUSIONS: Contrast-enhanced MR imaging using liposomal-Gd enabled adequate visualization of the retroplacental clear space starting at day 12 of gestation. The agent also enabled characterization of placental structure and morphological changes through gestation.


Subject(s)
Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Animals , Contrast Media , Female , Gadolinium , Gestational Age , Liposomes , Mice , Mice, Inbred C57BL , Models, Animal , Placenta/anatomy & histology , Placentation , Pregnancy
7.
Sci Rep ; 8(1): 14455, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30262808

ABSTRACT

Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluorescence. Fluorescence spectra of liposomal-ICG were collected in phosphate-buffered saline (PBS) and plasma. Imaging studies in an Intralipid® phantom were performed to determine penetration depth. In vivo imaging studies were performed to test real-time visualization of vascular structures in the hind limb and intracranial regions. Free ICG, NIR-I imaging, and cross-sectional imaging modalities (MRI and CT) were used as comparators. Fluorescence spectra demonstrated the strong NIR-II fluorescence of liposomal-ICG, similar to free ICG in plasma. In vitro studies demonstrated superior performance of liposomal-ICG over free ICG for NIR-II imaging of deep (≥4 mm) vascular mimicking structures. In vivo, NIR-II fluorescence imaging using liposomal-ICG resulted in significantly (p < 0.05) higher contrast-to-noise ratio compared to free ICG for extended periods of time, allowing visualization of hind limb and intracranial vasculature for up to 4 hours post-injection. In vivo comparisons demonstrated higher vessel conspicuity with liposomal-ICG-enhanced NIR-II imaging compared to NIR-I imaging.


Subject(s)
Angiography/methods , Hindlimb , Indocyanine Green , Nanoparticles/chemistry , Optical Imaging/methods , Skull , Animals , Female , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Liposomes , Mice , Mice, Nude , Phantoms, Imaging , Skull/blood supply , Skull/diagnostic imaging
8.
Sci Rep ; 8(1): 3733, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487319

ABSTRACT

Inflammation drives the degradation of atherosclerotic plaque, yet there are no non-invasive techniques available for imaging overall inflammation in atherosclerotic plaques, especially in the coronary arteries. To address this, we have developed a clinically relevant system to image overall inflammatory cell burden in plaque. Here, we describe a targeted contrast agent (THI0567-targeted liposomal-Gd) that is suitable for magnetic resonance (MR) imaging and binds with high affinity and selectivity to the integrin α4ß1(very late antigen-4, VLA-4), a key integrin involved in recruiting inflammatory cells to atherosclerotic plaques. This liposomal contrast agent has a high T1 relaxivity (~2 × 105 mM-1s-1 on a particle basis) resulting in the ability to image liposomes at a clinically relevant MR field strength. We were able to visualize atherosclerotic plaques in various regions of the aorta in atherosclerosis-prone ApoE-/- mice on a 1 Tesla small animal MRI scanner. These enhanced signals corresponded to the accumulation of monocyte/macrophages in the subendothelial layer of atherosclerotic plaques in vivo, whereas non-targeted liposomal nanoparticles did not demonstrate comparable signal enhancement. An inflammatory cell-targeted method that has the specificity and sensitivity to measure the inflammatory burden of a plaque could be used to noninvasively identify patients at risk of an acute ischemic event.


Subject(s)
Integrin alpha4beta1/chemistry , Integrin alpha4beta1/metabolism , Magnetic Resonance Imaging , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/metabolism , Animals , Disease Models, Animal , Integrin alpha4beta1/antagonists & inhibitors , Ligands , Liposomes , Magnetic Resonance Imaging/methods , Mice , Mice, Knockout , Models, Molecular , Molecular Conformation , Plaque, Atherosclerotic/pathology , Protein Binding , Structure-Activity Relationship
9.
Placenta ; 57: 60-70, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28864020

ABSTRACT

INTRODUCTION: Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. MATERIALS AND METHODS: Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem®). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. RESULTS: Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. CONCLUSIONS: Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent.


Subject(s)
Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Animals , Female , Humans , In Vitro Techniques , Liposomes , Pregnancy , Rats , Rats, Sprague-Dawley
10.
Adv Healthc Mater ; 6(5)2017 Mar.
Article in English | MEDLINE | ID: mdl-28081298

ABSTRACT

In a rat model of right free wall replacement, the transplantation of an engineered multilayered myocardial patch fabricated from a polycaprolactone membrane supporting a chitosan/heart matrix hydrogel induces significant muscular and vascular remodeling and results in a significantly higher right ventricular ejection fraction compared to use of a commercially available pericardium patch.


Subject(s)
Chitosan , Hydrogels , Materials Testing , Membranes, Artificial , Myocardium , Pericardium , Animals , Chitosan/chemistry , Chitosan/pharmacology , Disease Models, Animal , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Polyesters/chemistry , Polyesters/pharmacology , Rats , Rats, Sprague-Dawley
11.
J Card Fail ; 17(11): 937-43, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22041331

ABSTRACT

BACKGROUND: A declining amplitude of body temperature circadian rhythm (BTCR) predicts decompensation or death in cardiomyopathic hamsters. We tested the hypothesis that changes in BTCR amplitude accompany significant changes in left ventricular (LV) size and function. METHODS AND RESULTS: Using intraperitoneal transmitters, we continuously monitored the temperature of 30 male BIO TO-2 Syrian dilated cardiomyopathic hamsters. Cosinor analysis was used to detect significant changes--defined as changes >1 standard deviation from the baseline amplitude for 3 consecutive days--in BTCR amplitude over each hamster's lifespan. The Student t-test was used to compare BTCR variability and LV size and function (as assessed by 2D echocardiography) between baseline and the time that BTCR amplitude declined. All hamsters received 10 mg/kg furosemide daily. At the time of BTCR amplitude decline, functional parameters had changed significantly (P < .0001) from baseline: ejection fraction (0.31 ± 0.09% vs. 0.52 ± 0.08%), LV end-systolic volume (0.11 ± 0.03 vs. 0.05 ± 0.02 cm(3)), and LV end-diastolic volume (0.16 ± 0.04 vs. 0.10 ± 0.03 cm(3)). CONCLUSIONS: In decompensated cardiomyopathic hamsters, a decline in BTCR amplitude was associated with progression of heart failure and cardiac decompensation. Variation in BTCR warrants further investigation because of its potential implications for the diagnosis and treatment of cardiovascular disorders.


Subject(s)
Body Temperature , Circadian Rhythm/physiology , Heart Failure/pathology , Ventricular Dysfunction, Left/pathology , Animals , Cricetinae , Disease Models, Animal , Heart Failure/diagnostic imaging , Linear Models , Male , Risk Assessment , Systole , Ultrasonography , Ventricular Dysfunction, Left/diagnostic imaging
12.
J Card Fail ; 16(3): 268-74, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20206903

ABSTRACT

BACKGROUND: Low body temperature is an independent predictor of poor prognosis in patients with congestive heart failure. The cardiomyopathic hamster develops progressive biventricular dysfunction, resulting in heart failure death at 9 months to 1 year of life. Our goal was to use cardiomyopathic hamsters to examine the relationship between body temperature and heart failure decompensation and death. METHODS AND RESULTS: To this end, we implanted temperature and activity transducers with telemetry into the peritoneal space of 46 male Bio-TO-2 Syrian cardiomyopathic hamsters. Multiple techniques, including computing mean temperature, frequency domain analysis, and nonlinear analysis, were used to determine the most useful method for predicting poor prognosis. Data from 44 hamsters were included in our final analysis. We detected a decline in core body temperature in 98% of the hamsters 8+/-4 days before death (P < .001). We examined the dominant frequency of temperature variation (ie, the circadian rhythm) by using cosinor analysis, which revealed a significant decrease in the amplitude of the body temperature circadian rhythm 8 weeks before death (0.28 degrees C; 95% CI, 0.26-0.31) compared to baseline (0.36 degrees C; 95% CI, 0.34-0.39; P=.005). The decline in the circadian temperature variation preceded all other evidence of decompensation. CONCLUSIONS: We conclude that a decrease in the amplitude of the body temperature circadian rhythm precedes fatal decompensation in cardiomyopathic hamsters. Continuous temperature monitoring may be useful in predicting preclinical decompensation in patients with heart failure and in identifying opportunities for therapeutic intervention.


Subject(s)
Body Temperature/physiology , Cause of Death , Circadian Rhythm , Heart Failure/mortality , Heart Failure/physiopathology , Animals , Cardiomyopathies/mortality , Cardiomyopathies/physiopathology , Cricetinae , Disease Models, Animal , Disease Progression , Male , Monitoring, Physiologic/methods , Probability , Sensitivity and Specificity , Survival Analysis , Ventricular Dysfunction, Left/mortality , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/physiopathology
13.
Tex Heart Inst J ; 35(2): 166-73, 2008.
Article in English | MEDLINE | ID: mdl-18612451

ABSTRACT

Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.


Subject(s)
Diagnostic Techniques, Cardiovascular/instrumentation , Heart Failure/complications , Heart Failure/physiopathology , Defibrillators, Implantable , Heart Failure/diagnosis , Humans , Monitoring, Physiologic/instrumentation , Predictive Value of Tests
14.
Exp Clin Cardiol ; 12(4): 189-96, 2007.
Article in English | MEDLINE | ID: mdl-18651003

ABSTRACT

Silent myocardial ischemia (SMI) is increasingly being recognized as part of the spectrum of ischemic heart disease. The spectrum of SMI ranges from asymptomatic coronary artery disease to critical illness necessitating intensive care. Although many diagnostic tools have been used to identify low- and high-risk subgroups, their use is limited by modest sensitivities and specificities. The present review identifies current concepts in the management of SMI in various clinical settings, as well as emerging technologies that may simplify the diagnosis and treatment of this condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...