Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Rep ; 33(3): 108290, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33086063

ABSTRACT

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.


Subject(s)
Bcl-2-Like Protein 11/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Apoptosis/drug effects , Azepines/pharmacology , B-Lymphocytes/metabolism , Bcl-2-Like Protein 11/physiology , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/genetics , Transcription Factors/physiology , Triazoles/pharmacology , Xenograft Model Antitumor Assays
2.
Nature ; 577(7789): 266-270, 2020 01.
Article in English | MEDLINE | ID: mdl-31827282

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Subject(s)
Histone Acetyltransferases/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Line, Tumor , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Structure, Tertiary
3.
Struct Dyn ; 6(6): 064701, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768400

ABSTRACT

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment. In this study, a fragment screen with Surface Plasmon Resonance (SPR) was used to identify a highly ligand-efficient imidazole-containing compound that is bound in the WIN site. The subsequent medicinal chemistry campaign-guided by a suite of high-resolution cocrystal structures with WDR5-progressed the initial hit to a low micromolar binder. One outcome from this study is a moiety that substitutes well for the side chain of arginine; a tripeptide containing one such substitution was resolved in a high resolution structure (1.5 Å) with a binding mode analogous to the native tripeptide. SPR furthermore indicates a similar residence time (k d = ∼0.06 s-1) for these two analogs. This novel scaffold therefore represents a possible means to overcome the potential permeability issues of WDR5 ligands that possess highly basic groups like guanidine. The series reported here furthers the understanding of the WDR5 WIN site and functions as a starting point for the development of more potent WDR5 inhibitors that may serve as cancer therapeutics.

4.
J Med Chem ; 60(16): 7029-7042, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28682065

ABSTRACT

A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective NaV1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug-drug interaction concerns to deliver the desired balance of preclinical in vitro properties. Concerns over nonmetabolic routes of clearance, variable clearance in preclinical species, and subsequent low confidence human pharmacokinetic predictions led to the decision to conduct a human microdose study to determine clinical pharmacokinetics. The design strategies and results from preclinical PK and clinical human microdose PK data are described leading to the discovery of the first subtype selective NaV1.7 inhibitor clinical candidate PF-05089771 (34) which binds to a site in the voltage sensing domain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Phenyl Ethers/pharmacology , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Cell Line , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , Humans , Microsomes, Liver/metabolism , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Phenyl Ethers/chemical synthesis , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
5.
PLoS One ; 11(4): e0152405, 2016.
Article in English | MEDLINE | ID: mdl-27050761

ABSTRACT

Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.


Subject(s)
Axons/physiology , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Presynaptic Terminals/physiology , Action Potentials , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , HEK293 Cells , Humans , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/physiology , Patch-Clamp Techniques , Phenyl Ethers/pharmacology , Sulfonamides/pharmacology
6.
Proc Natl Acad Sci U S A ; 110(29): E2724-32, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818614

ABSTRACT

Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1-S4 voltage sensor segment of homologous Domain 4. Amino acid residues in the "extracellular" facing regions of the S2 and S3 transmembrane segments of Nav1.3 and Nav1.7 seem to be major determinants of Nav subtype selectivity and to confer differences in species sensitivity to these inhibitors. The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.


Subject(s)
Acetamides/pharmacology , Electrophysiological Phenomena/physiology , NAV1.3 Voltage-Gated Sodium Channel/metabolism , Thiazoles/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Amino Acid Motifs/genetics , Binding Sites/genetics , HEK293 Cells , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , NAV1.3 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques , Sequence Alignment
7.
J Med Chem ; 54(1): 67-77, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21128663

ABSTRACT

Preventing entry of HIV into human host cells has emerged as an attractive approach to controlling viral replication. Maraviroc 1 is an approved antagonist of the human CCR5 receptor which prevents the entry of HIV. Herein, we report the design and discovery of a series of imidazopiperidine CCR5 antagonists which retain the attractive antiviral profile and window over hERG activity of maraviroc 1, combined with improved absorption profiles in rat and dog. Furthermore, this series of compounds has been shown to retain activity against a laboratory generated maraviroc-resistant HIV-1 strain, which indicates an alternative resistance profile to that of maraviroc 1. Compound 41f (PF-232798) was selected as a clinical candidate from the imidazopiperidine series and is currently in phase II clinical trials.


Subject(s)
Anti-HIV Agents/chemical synthesis , Azabicyclo Compounds/chemical synthesis , CCR5 Receptor Antagonists , HIV-1/drug effects , Imidazoles/chemical synthesis , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacology , Cell Line , Cricetinae , Cyclohexanes/pharmacology , Dogs , Drug Resistance, Viral , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , HIV-1/isolation & purification , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Maraviroc , Models, Molecular , Protein Binding , Rats , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacology , Tropanes
8.
Bioorg Med Chem Lett ; 19(20): 5857-60, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19748778

ABSTRACT

We prepared three discreet cohorts of potent non-nucleoside HIV reverse transcriptase inhibitors (NNRTIs) based on the recently reported 3-cyanophenoxypyrazole lead 3. Several of these compounds displayed very promising anti-HIV activity in vitro, safety, pharmacokinetic and pharmaceutical profiles. We describe our analysis and conclusions leading to the selection of alcohol 5 (UK-453,061, lersivirine) for clinical development.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Nitriles/chemistry , Pyrazoles/chemistry , Reverse Transcriptase Inhibitors/chemistry , Acquired Immunodeficiency Syndrome/drug therapy , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Cell Line , Drug Resistance, Viral , HIV Reverse Transcriptase/metabolism , Humans , Microsomes, Liver/metabolism , Nitriles/chemical synthesis , Nitriles/pharmacokinetics , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics
9.
Bioorg Med Chem Lett ; 19(19): 5603-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19717303

ABSTRACT

Our efforts to reduce overall lipophilicity and increase ligand-lipophilicity efficiency (LLE) by modification of the 3- and 5-substituents of pyrazole 1, a novel non-nucleoside HIV reverse transcriptase inhibitor (NNRTI) prototype were unsuccessful. In contrast replacement of the substituted benzyl group with corresponding phenylthio or phenoxy groups resulted in marked improvements in potency, ligand efficiency (LE) and LLE.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/chemistry , Reverse Transcriptase Inhibitors/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Chemical Phenomena , Drug Design , HIV Reverse Transcriptase/metabolism , Humans , Microsomes, Liver/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology
11.
Org Lett ; 10(7): 1389-91, 2008 Apr 03.
Article in English | MEDLINE | ID: mdl-18324820

ABSTRACT

An efficient enantioselective total synthesis of (R)-rolipram and an efficient enantioselective formal synthesis of (3S,4R)-paroxetine has been achieved using the highly enantioselective Michael addition of malonate nucleophiles as key steps in both cases.


Subject(s)
Paroxetine/chemical synthesis , Rolipram/chemical synthesis , Catalysis , Malonates/chemistry , Molecular Structure , Paroxetine/chemistry , Rolipram/chemistry , Stereoisomerism
12.
Org Lett ; 9(11): 2107-10, 2007 May 24.
Article in English | MEDLINE | ID: mdl-17477536

ABSTRACT

5-Aryl-1,3-dioxolan-4-one heterocycles derived from mandelic acid derivatives and hexafluoroacetone have been identified as new and effective pro-nucleophiles in highly diastereo- and enantioselective Michael addition reactions to nitro olefins catalyzed by bifunctional epi-9-amino-9-deoxy cinchona alkaloid derivatives. Diastereoselectivities up to 98% and enantioselectivities up to 89% for a range of nitro olefins and 5-aryl-1,3-dioxolan-4-ones under mild reaction conditions are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...