Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20212021 May 12.
Article in English | MEDLINE | ID: mdl-33997660

ABSTRACT

The function of the budding yeast YML018C protein remains to be determined. High-throughput studies have reported that the YML018C protein localizes to the vacuolar membrane and physically interacts with the autophagy-related protein Atg27p. While this evidence suggests a potential role for this uncharacterized protein in the process of autophagy, the function of this putative interaction remains uncharacterized. In this micropublication, we report our finding that the localization of the YML018C protein to the vacuolar membrane does not require Atg27p.

2.
Autophagy ; 17(4): 837-839, 2021 04.
Article in English | MEDLINE | ID: mdl-32543335

ABSTRACT

The common view of art and science as polar opposites along the educational spectrum can sometimes mask the degree to which they inform one another. In fact, art can also serve as a way to foster interest in querying the natural world, ultimately allowing us to recruit highly creative individuals to join the scientific community. We have experienced firsthand how cellular processes, such as autophagy, which are not usually highlighted or described in detail in foundational cell biology textbooks, have served as an on-ramp for artists at the undergraduate and high school levels in the context of scientific research and science outreach, respectively. We discuss our experiences in this article and highlight the ways in which art's many dimensions are well-suited, not only for forging connections between scientists and their communities but also for encouraging creativity in the way scientists engage with visually and conceptually complex phenomena, such as autophagy.Abbreviations: AP-3: adaptor protein complex 3; Atg27: autophagy related protein 27; STEAM: science, technology, engineering, arts, and mathematics; STEM: science, technology, engineering and math.


Subject(s)
Autophagy , Science , Adaptor Protein Complex 3/metabolism , Autophagosomes/metabolism , Creativity , Humans , Lipids/biosynthesis
3.
Genes (Basel) ; 11(8)2020 07 22.
Article in English | MEDLINE | ID: mdl-32707778

ABSTRACT

The ability of yeast to survive freezing and thawing is most frequently considered in the context of cryopreservation, a practical step in both industrial and research applications of these organisms. However, it also relates to an evolved ability to withstand freeze-thaw stress that is integrated with a larger network of survival responses. These responses vary between different strains and species of yeast according to the environments to which they are adapted, and the basis of this adaptation appears to be both conditioned and genetic in origin. This review article briefly touches upon common yeast cryopreservation methods and describes in detail what is known about the biochemical and genetic determinants of cell viability following freeze-thaw stress. While we focus on the budding yeast Saccharomyces cerevisiae, in which the freeze-thaw stress response is best understood, we also highlight the emerging diversity of yeast freeze-thaw responses as a manifestation of biodiversity among these organisms.


Subject(s)
Adaptation, Physiological , Cryopreservation/methods , Freezing , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
BMC Res Notes ; 12(1): 505, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412956

ABSTRACT

OBJECTIVE: A classical method to quantitatively determine the starvation sensitivity phenotype of autophagy mutant budding yeast strains is to starve them for a period of time and then to assess the proportion of cells that retain the ability to form colonies when the availability of nutrients is restored. The readout of this colony-formation assay is generally evaluated after a fixed period of time following the restoration of nutrients, so that it can be considered an endpoint assay. One drawback we have identified is the inability to characterize subtle intermediary phenotypes that are detectable at the molecular level but fail to reach statistical significance in the colony formation experiment. We set out to determine whether a more dynamic measurement of growth during recovery after starvation would increase the sensitivity with which we are able to detect partial loss-of-function phenotypes. RESULTS: We describe a 96-well plate-based assay to kinetically assess starvation sensitivity in budding yeast that allows for the quantitative detection of very modest starvation sensitivity phenotypes with statistical significance in autophagy mutant yeast strains lacking the ATG27 gene.


Subject(s)
Autophagy/genetics , Mutation , Saccharomyces cerevisiae/genetics , Starvation , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Kinetics , Phenotype , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...