Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Alcohol ; 118: 9-16, 2024 08.
Article in English | MEDLINE | ID: mdl-38582261

ABSTRACT

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.


Subject(s)
Ethanol , Humans , Alcoholism/immunology , Ethanol/pharmacology , Ethanol/adverse effects , Infections/immunology
2.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585802

ABSTRACT

Metabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health. The possibility that MAMs drive changes in cellular function in individuals with Type 2 Diabetes (T2D) is controversial. Although disruptions in MAMs that change the distance between the mitochondria and ER, MAM protein composition, or disrupt downstream signaling, can perpetuate inflammation, one key trait of T2D. However, the full scope of this structure's role in immune cell health and thus T2D-associated inflammation remains unknown. We show that human immune cell MAM proteins and their associated functions are not altered by T2D and thus unlikely to contribute to metaflammation.

3.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370737

ABSTRACT

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.

4.
Platelets ; 34(1): 2264978, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37933490

ABSTRACT

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Subject(s)
COVID-19 , Deep Learning , Humans , RNA, Viral , SARS-CoV-2 , Blood Platelets/ultrastructure , Organelles
5.
Sci Rep ; 13(1): 6554, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085548

ABSTRACT

The purpose was to examine patient-centered outcomes and the occurrence of lung fibrotic changes on Chest computed tomography (CT) imaging following pneumonia-related acute respiratory distress syndrome (ARDS). We sought to investigate outpatient clinic chest CT imaging in survivors of COVID19-related ARDS and non-COVID-related ARDS, to determine group differences and explore relationships between lung fibrotic changes and functional outcomes. A retrospective practice analysis of electronic health records at an ICU Recovery Clinic in a tertiary academic medical center was performed in adult patients surviving ARDS due to COVID-19 and non-COVID etiologies. Ninety-four patients with mean age 53 ± 13 and 51% male were included (n = 64 COVID-19 and n = 30 non-COVID groups). There were no differences for age, sex, hospital length of stay, ICU length of stay, mechanical ventilation duration, or sequential organ failure assessment (SOFA) scores between the two groups. Fibrotic changes visualized on CT imaging occurred in a higher proportion of COVID-19 survivors (70%) compared to the non-COVID group (43%, p < 0.001). Across both groups, patients with fibrotic changes (n = 58) were older, had a lower BMI, longer hospital and ICU LOS, lower mean RASS scores, longer total duration of supplemental oxygen. While not statistically different, patients with fibrotic changes did have reduced respiratory function, worse performance on the six-minute walk test, and had high occurrences of anxiety, depression, emotional distress, and mild cognitive impairment regardless of initial presenting diagnosis. Patients surviving pneumonia-ARDS are at high risk of impairments in physical, emotional, and cognitive health related to Post-Intensive Care Syndrome. Of clinical importance, pulmonary fibrotic changes on chest CT occurred in a higher proportion in COVID-ARDS group; however, no functional differences were measured in spirometry or physical assessments at ICU follow-up. Whether COVID infection imparts a unique recovery is not evident from these data but suggest that long-term follow up is necessary for all survivors of ARDS.


Subject(s)
COVID-19 , Pneumonia , Pulmonary Fibrosis , Respiratory Distress Syndrome , Adult , Humans , Male , Middle Aged , Aged , Female , COVID-19/complications , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnostic imaging , Retrospective Studies , Pneumonia/complications , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/epidemiology
6.
Crit Care Explor ; 5(1): e0849, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699245

ABSTRACT

Opioids remain a standard supportive therapy in patients admitted to the ICU with sepsis. However, as preclinical models indicate an association between opioid exposure and immunosuppression, the use of this class of drugs warrants investigation. The objective of this study was to investigate whether opioid exposure causes immunosuppression in patients with sepsis, and to use a murine sepsis model to determine the effects of opioid exposure on secondary infection. HYPOTHESIS: We hypothesized opioid exposure would be associated with immunosuppression in patients with sepsis and secondary infection in a murine sepsis model. METHODS AND MODELS: This was a two-phase preclinical and clinical study. The clinical phase included a subgroup of patients with sepsis from an existing randomized controlled trial while the preclinical phase used a murine model of sepsis with C57BL/6 mice. In the clinical phase, a post hoc analysis was performed in subjects receiving fentanyl versus no opioid receipt. In the preclinical phase, a murine cecal slurry-induced sepsis model followed by secondary infection was used. Mice were randomized to fentanyl versus no fentanyl concomitantly. RESULTS: In clinical sepsis, a significant decrease in interleukin-23 (IL-23) level in patients with fentanyl exposure was observed and lower IL-23 was associated with mortality (p < 0.001). Other measured cytokines showed no significant differences. Concomitant fentanyl exposure during murine sepsis was associated with a significantly higher bacterial burden (p < 0.001) after secondary infection; however, immune cell counts and plasma cytokine levels were largely unaffected by fentanyl. INTERPRETATION AND CONCLUSIONS: Minimal alterations in cytokines were seen with opioid exposure during clinical sepsis. In a preclinical model, opioid exposure during sepsis was associated with ineffective bacterial clearance upon secondary infection. Further studies are warranted to evaluate the immunomodulatory role of opioids and their implications, especially in the post-sepsis period.

7.
Front Cell Dev Biol ; 11: 1330433, 2023.
Article in English | MEDLINE | ID: mdl-38304613

ABSTRACT

Elevated plasma levels of plasminogen activator inhibitor type 1 (PAI-1) are documented in patients with sepsis and levels positively correlate with disease severity and mortality. Our prior work demonstrated that PAI-1 in plasma is positively associated with acute kidney injury (AKI) in septic patients and mice. The objective of this study was to determine if PAI-1 is causally related to AKI and worse sepsis outcomes using a clinically-relevant and age-appropriate murine model of sepsis. Sepsis was induced by cecal slurry (CS)-injection to wild-type (WT, C57BL/6) and PAI-1 knockout (KO) mice at young (5-9 months) and old (18-22 months) age. Survival was monitored for at least 10 days or mice were euthanized for tissue collection at 24 or 48 h post-insult. Contrary to our expectation, PAI-1 KO mice at old age were significantly more sensitive to CS-induced sepsis compared to WT mice (24% vs. 65% survival, p = 0.0037). In comparison, loss of PAI-1 at young age had negligible effects on sepsis survival (86% vs. 88% survival, p = 0.8106) highlighting the importance of age as a biological variable. Injury to the kidney was the most apparent pathological consequence and occurred earlier in aged PAI-1 KO mice. Coagulation markers were unaffected by loss of PAI-1, suggesting thrombosis-independent mechanisms for PAI-1-mediated protection. In summary, although high PAI-1 levels are clinically associated with worse sepsis outcomes, loss of PAI-1 rendered mice more susceptible to kidney injury and death in a CS-induced model of sepsis using aged mice. These results implicate PAI-1 as a critical factor in the resolution of sepsis in old age.

8.
Intensive Care Med Exp ; 10(1): 22, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35644896

ABSTRACT

BACKGROUND: Mechanical power is a promising new metric to assess energy transfer from a mechanical ventilator to a patient, which combines the contributions of multiple parameters into a single comprehensive value. However, at present, most ventilators are not capable of calculating mechanical power automatically, so there is a need for a simple equation that can be used to estimate this parameter at the bedside. For volume-controlled ventilation (VCV), excellent equations exist for calculating power from basic ventilator parameters, but for pressure-controlled ventilation (PCV), an accurate, easy-to-use equation has been elusive. RESULTS: Here, we present a new power equation and evaluate its accuracy compared to the three published PCV power equations. When applied to a sample of 50 patients on PCV with a non-zero rise time, we found that our equation estimated power within an average of 8.4% ± 5.9% (mean ± standard deviation) of the value obtained by numerical integration of the P-V loop. The other three equations estimated power with an error of 19.4% ± 12.9% (simplified Becher equation), 10.0% ± 6.8% (comprehensive Becher equation), and 16.5% ± 14.6% (van der Meijden equation). CONCLUSIONS: Our equation calculates power more accurately than the other three published equations, and is much easier to use than the only previously published equation with similar accuracy. The proposed new mechanical power equation is accurate and simple to use, making it an attractive option to estimate power in PCV cases at the bedside.

9.
Nature ; 604(7905): 337-342, 2022 04.
Article in English | MEDLINE | ID: mdl-35355021

ABSTRACT

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Subject(s)
Dermatitis, Atopic , PPAR gamma , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Obesity/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Precision Medicine , Sequence Analysis, RNA , Th2 Cells/metabolism
11.
Thorax ; 77(4): 351-356, 2022 04.
Article in English | MEDLINE | ID: mdl-34417353

ABSTRACT

INTRODUCTION: COPD is a heterogeneous disorder with varied phenotypes. We aimed to determine the prevalence of asthma history, peripheral eosinophilia and elevated FeNO levels along with the diagnostic utility of peripheral eosinophilia in identifying airway eosinophilic inflammation. METHODS: National Health and Nutrition Examination Survey data were analysed for the study period 2007-2010. Subjects aged ≥40 years with postbronchodilator FEV1/FVC ratio <0.70 were included. Receiver operator curve analysis was performed for sensitivity analysis. A p value of <0.001 is considered statistically significant. RESULTS: A total of 3 110 617 weighted COPD cases were identified; predominantly male (64.4%) and non-Hispanic whites (86.1%). Among our COPD subjects, 14.6% had a history of doctor diagnosed asthma, highest among females and other race Americans. The overall prevalence of peripheral eosinophilia is 36%, 38.3% among COPD subjects with asthma history, and 35.6% among COPD without asthma history. The overall prevalence of elevated FeNO ≥25 ppb is 14.3%; 28.7% among COPD subjects with asthma history and 13.0% among COPD without asthma history. DISCUSSION: The prevalence of FeNO levels ≥25 ppb and peripheral eosinophilia was significantly higher among COPD subjects with asthma compared with COPD without asthma history. Not all COPD subjects with peripheral eosinophilia and elevated FeNO levels have a reported history of asthma. Our study supports clinically phenotyping COPD subjects with eosinophilic inflammation be independent of their asthma history and peripheral eosinophilia can be used as a surrogate marker in resource-limited settings.


Subject(s)
Eosinophilia , Pulmonary Disease, Chronic Obstructive , Breath Tests , Eosinophilia/epidemiology , Eosinophils , Female , Fractional Exhaled Nitric Oxide Testing , Humans , Male , Nitric Oxide/analysis , Nutrition Surveys
12.
Am J Med Sci ; 362(6): 537-545, 2021 12.
Article in English | MEDLINE | ID: mdl-34597688

ABSTRACT

Mechanical ventilation is a potentially life-saving therapy for patients with acute lung injury, but the ventilator itself may cause lung injury. Ventilator-induced lung injury (VILI) is sometimes an unfortunate consequence of mechanical ventilation. It is not clear however how best to minimize VILI through adjustment of various parameters including tidal volume, plateau pressure, driving pressure, and positive end expiratory pressure (PEEP). No single parameter provides a clear indication for onset of lung injury attributable exclusively to the ventilator. There is currently interest in quantifying how static and dynamic parameters contribute to VILI. One concept that has emerged is the consideration of the amount of energy transferred from the ventilator to the respiratory system per unit time, which can be quantified as mechanical power. This review article reports on recent literature in this emerging field and future roles for mechanical power assessments in prospective studies.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Humans , Prospective Studies , Respiration, Artificial/adverse effects , Tidal Volume , Ventilator-Induced Lung Injury/etiology , Ventilator-Induced Lung Injury/prevention & control
13.
bioRxiv ; 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34545369

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is an enzyme that limits activity of the renin-angiotensin system (RAS) and also serves as a receptor for the SARS-CoV-2 Spike (S) protein. Binding of S protein to ACE2 causes internalization which activates local RAS. ACE2 is on the X chromosome and its expression is regulated by sex hormones. In this study, we defined ACE2 mRNA abundance and examined effects of S protein on ACE2 activity and/or angiotensin II (AngII) levels in pivotal tissues (lung, adipose) from male and female mice. In lung, ACE2 mRNA abundance was reduced following gonadectomy (GDX) of male and female mice and was higher in XX than XY mice of the Four Core Genotypes (FCG). Reductions in lung ACE2 mRNA abundance by GDX occurred in XX, but not XY FCG female mice. Lung mRNA abundance of ADAM17 and TMPRSS2, enzymes that shed cell surface ACE2 and facilitate viral cell entry, was reduced by GDX in male but not female mice. For comparison, adipose ACE2 mRNA abundance was higher in female than male mice and higher in XX than XY FCG mice. Adipose ADAM17 mRNA abundance was increased by GDX of male and female mice. S protein reduced ACE2 activity in alveolar type II epithelial cells and 3T3-L1 adipocytes. Administration of S protein to male and female mice increased lung AngII levels and decreased adipose ACE2 activity in male but not female mice. These results demonstrate that sex differences in ACE2 expression levels may impact local RAS following S protein exposures.

14.
Crit Care Explor ; 3(3): e0374, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33786450

ABSTRACT

OBJECTIVES: Since the beginning of the coronavirus disease 2019 pandemic, hundreds of thousands of patients have been treated in ICUs across the globe. The severe acute respiratory syndrome-associated coronavirus 2 virus enters cells via the angiotensin-converting enzyme 2 receptor and activates several distinct inflammatory pathways, resulting in hematologic abnormalities and dysfunction in respiratory, cardiac, gastrointestinal renal, endocrine, dermatologic, and neurologic systems. This review summarizes the current state of research in coronavirus disease 2019 pathophysiology within the context of potential organ-based disease mechanisms and opportunities for translational research. DATA SOURCES: Investigators from the Research Section of the Society of Critical Care Medicine were selected based on expertise in specific organ systems and research focus. Data were obtained from searches conducted in Medline via the PubMed portal, Directory of Open Access Journals, Excerpta Medica database, Latin American and Caribbean Health Sciences Literature, and Web of Science from an initial search from December 2019 to October 15, 2020, with a revised search to February 3, 2021. The medRxiv, Research Square, and clinical trial registries preprint servers also were searched to limit publication bias. STUDY SELECTION: Content experts selected studies that included mechanism-based relevance to the severe acute respiratory syndrome-associated coronavirus 2 virus or coronavirus disease 2019 disease. DATA EXTRACTION: Not applicable. DATA SYNTHESIS: Not applicable. CONCLUSIONS: Efforts to improve the care of critically ill coronavirus disease 2019 patients should be centered on understanding how severe acute respiratory syndrome-associated coronavirus 2 infection affects organ function. This review articulates specific targets for further research.

15.
J Allergy Clin Immunol ; 147(5): 1936-1948.e9, 2021 05.
Article in English | MEDLINE | ID: mdl-33130063

ABSTRACT

BACKGROUND: Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE: We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS: Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS: Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION: Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.


Subject(s)
Asthma/immunology , Ceramides/immunology , Lung/immunology , Oxidative Stress , Adult , Allergens/immunology , Alternaria/immunology , Animals , Apoptosis , Disease Models, Animal , Female , Humans , Inflammation/immunology , Male , Mice, Inbred C57BL , Middle Aged , Pyroglyphidae/immunology , Reactive Oxygen Species/immunology , Young Adult
16.
J Med Case Rep ; 14(1): 161, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912329

ABSTRACT

BACKGROUND: In this case report, we describe the trajectory of recovery of a young, healthy patient diagnosed with coronavirus disease 2019 who developed acute respiratory distress syndrome. The purpose of this case report is to highlight the potential role of intensive care unit recovery or follow-up clinics for patients surviving acute hospitalization for coronavirus disease 2019. CASE PRESENTATION: Our patient was a 27-year-old Caucasian woman with a past medical history of asthma transferred from a community hospital to our medical intensive care unit for acute hypoxic respiratory failure due to bilateral pneumonia requiring mechanical ventilation (ratio of arterial oxygen partial pressure to fraction of inspired oxygen, 180). On day 2 of her intensive care unit admission, reverse transcription-polymerase chain reaction confirmed coronavirus disease 2019. Her clinical status gradually improved, and she was extubated on intensive care unit day 5. She had a negative test result for coronavirus disease 2019 twice with repeated reverse transcription-polymerase chain reaction before being discharged to home after 10 days in the intensive care unit. Two weeks after intensive care unit discharge, the patient returned to our outpatient intensive care unit recovery clinic. At follow-up, the patient endorsed significant fatigue and exhaustion with difficulty walking, minor issues with sleep disruption, and periods of memory loss. She scored 10/12 on the short performance physical battery, indicating good physical function. She did not have signs of anxiety, depression, or post-traumatic stress disorder through self-report questionnaires. Clinically, she was considered at low risk of developing post-intensive care syndrome, but she required follow-up services to assist in navigating the healthcare system, addressing remaining symptoms, and promoting return to her pre-coronavirus disease 2019 societal role. CONCLUSION: We present this case report to suggest that patients surviving coronavirus disease 2019 with subsequent development of acute respiratory distress syndrome will require more intense intensive care unit recovery follow-up. Patients with a higher degree of acute illness who also have pre-existing comorbidities and those of older age who survive mechanical ventilation for coronavirus disease 2019 will require substantial post-intensive care unit care to mitigate and treat post-intensive care syndrome, promote reintegration into the community, and improve quality of life.


Subject(s)
Coronavirus Infections/therapy , Critical Care , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/virology , Adult , Betacoronavirus , COVID-19 , Chronic Disease , Critical Illness , Female , Humans , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome/therapy , SARS-CoV-2
17.
Addict Behav ; 108: 106462, 2020 09.
Article in English | MEDLINE | ID: mdl-32442871

ABSTRACT

Though e-cigarette aerosol has been associated with altered lung cell function, few studies have examined the effects of use on immune response and respiratory symptoms. The purpose of this study was to examine if recent persistent cough or cytokine levels are related to Electronic Nicotine Delivery Systems (ENDS) use in college students. In April 2019, 61 undergraduate students at the University of Kentucky completed surveys and provided a salivary sample to evaluate cytokine levels (Interleukin (IL-) 2, 4, 6, 8, 10, 12, 13 and TNFα, INFγ), using quota sampling to obtain comparable numbers of ENDS users and non-ENDS users. Data analysis included chi-square tests and multivariable logistic and linear regression. All ENDS users reported JUUL as their primary product. ENDS users were more likely to be younger, use cigarettes and marijuana, and report a persistent cough. Controlling for cigarette and marijuana use, there was a trend toward greater likelihood of persistent cough among ENDS users. Compared with nonusers, salivary IL-2 and INFγ were elevated and IL-4 was decreased, controlling for cigarette and marijuana use. There was a trend toward lower IL-12p70 values among ENDS users with these covariates. Findings reveal dysregulation of salivary immune profiles toward a TH1 phenotype in emerging adult ENDS users and short-term immune function may be dysregulated in young adult e-cigarette users.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Biomarkers , Cough/epidemiology , Humans , Students , Young Adult
18.
Front Immunol ; 10: 2470, 2019.
Article in English | MEDLINE | ID: mdl-31681336

ABSTRACT

Allogeneic hematopoietic stem cell transplant (allo-HSCT) is often used to treat acute leukemia or defects of hematopoiesis. Its widespread use is hampered by graft-vs.-host disease (GVHD), which has high morbidity and mortality in both acute and chronic subtypes. Chronic GVHD (cGVHD) occurs most frequently in skin and often is characterized by pathogenic fibrosis. Mast cells (MCs) are known to be involved in the pathogenesis of other fibrotic diseases. In a murine model of cGVHD after allo-HSCT, C57BL/6J recipients of allogeneic LP/J donor cells develop sclerodermatous dermal cGVHD which is significantly decreased in mast cell-deficient B6.Cg-KitW-sh/HNihrJaeBsmGlliJ recipients. The presence of MCs is associated with fibrosis, chemokine production, and recruitment of GVHD effector cells to the skin. Chemokine production by MCs is blocked by drugs used to treat cGVHD. The importance of MCs in skin cGVHD is mirrored by increased MCs in the skin of patients with dermal cGVHD. We show for the first time a role for MCs in skin cGVHD that may be targetable for preventive and therapeutic intervention in this disease.


Subject(s)
Cytokines/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/methods , Mast Cells/immunology , Skin/immunology , Adult , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Female , Fibrosis , Gene Expression Profiling/methods , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Mast Cells/cytology , Mast Cells/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Skin/metabolism , Skin/pathology , Transplantation, Homologous
19.
JAMA ; 322(13): 1261-1270, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31573637

ABSTRACT

Importance: Experimental data suggest that intravenous vitamin C may attenuate inflammation and vascular injury associated with sepsis and acute respiratory distress syndrome (ARDS). Objective: To determine the effect of intravenous vitamin C infusion on organ failure scores and biological markers of inflammation and vascular injury in patients with sepsis and ARDS. Design, Setting, and Participants: The CITRIS-ALI trial was a randomized, double-blind, placebo-controlled, multicenter trial conducted in 7 medical intensive care units in the United States, enrolling patients (N = 167) with sepsis and ARDS present for less than 24 hours. The study was conducted from September 2014 to November 2017, and final follow-up was January 2018. Interventions: Patients were randomly assigned to receive intravenous infusion of vitamin C (50 mg/kg in dextrose 5% in water, n = 84) or placebo (dextrose 5% in water only, n = 83) every 6 hours for 96 hours. Main Outcomes and Measures: The primary outcomes were change in organ failure as assessed by a modified Sequential Organ Failure Assessment score (range, 0-20, with higher scores indicating more dysfunction) from baseline to 96 hours, and plasma biomarkers of inflammation (C-reactive protein levels) and vascular injury (thrombomodulin levels) measured at 0, 48, 96, and 168 hours. Results: Among 167 randomized patients (mean [SD] age, 54.8 years [16.7]; 90 men [54%]), 103 (62%) completed the study to day 60. There were no significant differences between the vitamin C and placebo groups in the primary end points of change in mean modified Sequential Organ Failure Assessment score from baseline to 96 hours (from 9.8 to 6.8 in the vitamin C group [3 points] and from 10.3 to 6.8 in the placebo group [3.5 points]; difference, -0.10; 95% CI, -1.23 to 1.03; P = .86) or in C-reactive protein levels (54.1 vs 46.1 µg/mL; difference, 7.94 µg/mL; 95% CI, -8.2 to 24.11; P = .33) and thrombomodulin levels (14.5 vs 13.8 ng/mL; difference, 0.69 ng/mL; 95% CI, -2.8 to 4.2; P = .70) at 168 hours. Conclusions and Relevance: In this preliminary study of patients with sepsis and ARDS, a 96-hour infusion of vitamin C compared with placebo did not significantly improve organ dysfunction scores or alter markers of inflammation and vascular injury. Further research is needed to evaluate the potential role of vitamin C for other outcomes in sepsis and ARDS. Trial Registration: ClinicalTrials.gov Identifier: NCT02106975.


Subject(s)
Ascorbic Acid/administration & dosage , Multiple Organ Failure/prevention & control , Respiratory Distress Syndrome/drug therapy , Sepsis/drug therapy , Vitamins/administration & dosage , Adult , Aged , Ascorbic Acid/therapeutic use , Biomarkers/blood , C-Reactive Protein/analysis , Double-Blind Method , Female , Humans , Infusions, Intravenous , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/etiology , Organ Dysfunction Scores , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/mortality , Sepsis/complications , Sepsis/mortality , Thrombomodulin/blood , Vitamins/therapeutic use
20.
Nurs Res ; 68(1): 29-38, 2019.
Article in English | MEDLINE | ID: mdl-30247335

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease in which patients present with metabolic dysregulation and obesity as well as fat accumulation in the liver. Those with NAFLD frequently have symptoms of fatigue, sleep disturbance, depression, and cognitive dysfunction. C1q/TNF-related protein 13 (CTRP13) regulates glucose metabolism and obesity in mice, yet the role of CTRP13 in human NAFLD has not been elucidated. AIMS: Our aims were to examine whether the plasma levels of CTRP13 are (a) increased in patients with NAFLD; (b) associated with metabolic dysregulation, obesity, liver enzymes, and dyslipidemia; and (c) associated with putative symptoms of NAFLD. METHODS: An observational study was conducted with 23 adults with confirmed NAFLD. Plasma levels of CTRP13, insulin resistance, insulin sensitivity, HbA1C, lipid profile, and liver enzymes were collected. Anthropometric analysis (body mass index, waist-hip circumference ratio) and bioelectrical impedance analysis of body composition were used to assess obesity. Symptom questionnaires were used to assess putative symptoms of NAFLD. Plasma levels of CTRP13 were measured in 21 age- and sex-matched control samples from a biobank. Paired t test was used for comparison of the CTRP13 between NAFLD and controls. Pearson's correlation coefficients were used to examine associations among variables. RESULTS: Plasma levels of CTRP13 were significantly higher in patients with NAFLD than in normal controls (p < .001), were associated with higher levels of aspartate aminotransferase, alanine aminotransferase (both p < .05), triglycerides (p < .001), and poorer cognitive function, particularly visuospatial memory (p < .001). CONCLUSIONS: CTRP13 may be a surrogate biomarker of NAFLD symptoms and associated with hepatocellular damage, dyslipidemia, and cognitive dysfunction.


Subject(s)
Adipokines/analysis , Cognition/physiology , Complement C1q/analysis , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/enzymology , Adipokines/blood , Adult , Aged , Body Mass Index , Cross-Sectional Studies , Female , Glycated Hemoglobin/analysis , Humans , Insulin Resistance/physiology , Liver/enzymology , Male , Middle Aged , Prospective Studies , Psychometrics/instrumentation , Psychometrics/methods , Surveys and Questionnaires , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...