Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(13): 3967-75, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23673016

ABSTRACT

Recently, a new class of HIV reverse transcriptase (HIV-RT) inhibitors has been reported. The novel mechanism of inhibition by this class involves competitive binding to the active site of the RT enzyme and has been termed Nucleotide-Competing Reverse Transcriptase Inhibitors (NcRTIs). In this publication we describe the optimization of a novel benzofurano[3,2-d]pyrimidin-2-one series of NcRTIs. The starting point for the current study was inhibitor 2, which had high biochemical and antiviral potency but only moderate permeability in a Caco-2 assay and high B-to-A efflux, resulting in moderate rat bioavailability and low Cmax. We present herein the results and strategies we employed to optimize both the potency as well as the permeability, metabolic stability and pharmacokinetic profile of this series. One of the key observations of the present study was the importance of shielding polar functionality, at least in the context of the current chemotype, to enhance permeability. These studies led to the identification of inhibitors 39 and 45, which display sub-nanomolar antiviral potency in a p24 ELISA assay with significantly reduced efflux ratios (ratios <1.5). These inhibitors also display excellent rat pharmacokinetic profiles with high bioavailabilities and low clearance.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV/drug effects , Pyrimidinones/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Benzofurans/chemistry , Biological Availability , Caco-2 Cells , Dose-Response Relationship, Drug , HIV Reverse Transcriptase/metabolism , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyrimidinones/administration & dosage , Pyrimidinones/chemistry , Rats , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 23(9): 2781-6, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23545107

ABSTRACT

A HTS screen led to the identification of a benzofurano[3,2-d]pyrimidin-2-one core structure which upon further optimization resulted in 1 as a potent HIV-1 nucleotide competing reverse transcriptase inhibitor (NcRTI). Investigation of the SAR at N-1 allowed significant improvements in potency and when combined with the incorporation of heterocycles at C-8 resulted in potent analogues not requiring a basic amine to achieve antiviral activity. Additional modifications at N-1 resulted in 33 which demonstrated excellent antiviral potency and improved physicochemical properties.


Subject(s)
Benzofurans/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Nucleotides/chemistry , Pyrimidinones/chemistry , Reverse Transcriptase Inhibitors/chemistry , Caco-2 Cells , Cell Membrane Permeability/drug effects , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Microsomes, Liver/metabolism , Nucleotides/metabolism , Protein Binding , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(9): 2775-80, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23511023

ABSTRACT

Screening of our sample collection led to the identification of a set of benzofurano[3,2-d]pyrimidine-2-one hits acting as nucleotide-competing HIV-1 reverse transcriptase inhibitiors (NcRTI). Significant improvement in antiviral potency was achieved when substituents were introduced at positions N1, C4, C7 and C8 on the benzofuranopyrimidone scaffold. The series was optimized from low micromolar enzymatic activity against HIV-1 RT and no antiviral activity to low nanomolar antiviral potency. Further profiling of inhibitor 30 showed promising overall in vitro properties and also demonstrated that its potency was maintained against viruses resistant to the other major classes of HIV-1 RT inhibitors.


Subject(s)
Benzofurans/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Nucleotides/chemistry , Pyrimidinones/chemistry , Reverse Transcriptase Inhibitors/chemistry , Animals , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Microsomes, Liver/metabolism , Nucleotides/metabolism , Protein Binding , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 17(11): 3038-43, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17418572

ABSTRACT

Some DP1 receptor antagonists from an indole-containing series were shown to cause in vitro covalent binding to protein in rat and human liver microsomes. Glutathione trapping experiments along with in vitro labeling assays confirmed that the presence of a strong electron withdrawing group was necessary to abrogate in vitro covalent binding, leading to the discovery of MK-0524. Hepatocyte incubations and in vivo studies showed that acyl-glucuronide formation did not translate into covalent binding.


Subject(s)
Glutathione/metabolism , Indoles/agonists , Indoles/metabolism , Microsomes, Liver/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Animals , Electrons , Glucuronides/biosynthesis , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Humans , Indoles/chemistry , Proteins/metabolism , Rats
6.
J Med Chem ; 50(4): 794-806, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17300164

ABSTRACT

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.


Subject(s)
Indoles/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Airway Obstruction/drug therapy , Animals , Bile/metabolism , Binding, Competitive , Dogs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Nasal Decongestants/chemical synthesis , Nasal Decongestants/pharmacokinetics , Nasal Decongestants/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Stereoisomerism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 16(11): 3043-8, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16529930

ABSTRACT

A novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.6 and 1.8 nM, respectively. These two antagonists are also potent in a DP functional assay where they inhibit the PGD2 induced cAMP production in platelet rich plasma with IC50 values of 7.9 and 8.6 nM, respectively. The structure-activity relationships of this indole series of DP receptor antagonists will also be discussed.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Indoles/chemical synthesis , Molecular Structure , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Safrole/analogs & derivatives , Safrole/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...