Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387655

ABSTRACT

This study aimed to assess the impact of acute exposure (96 h) to Cd in gills, digestive gland and muscle of the Tehuelche scallop Aequipecten tehuelchus from San José gulf in Patagonia, Argentina. Scallops were exposed to Cd concentrations of 0, 25, 50, 100, 150, 204, 275, 371, and 500 µg/L, and mortality rates were recorded after 96 h of exposure. Surviving organisms were analyzed for the biochemical response through reactive oxygen and nitrogen species (RONS), activities of catalase (CAT) and glutathione-S-transferase (GST), metallothioneins (MT), lipid peroxidation (LPO) and liposoluble antioxidants α-tocopherol (α-T) and ß-carotene (ß-C). The mean lethal concentration (LC50) was 155.8 µg Cd/L, a lower value than other scallops' species, showing that A. tehuelchus has a particular sensitivity to Cd. In the three tissues, at all exposure concentrations, there was no significant response in RONS levels, GST activity or LPO. Nevertheless, CAT activity and α-T levels decreased in the gills but increased in the digestive gland, with no significant response in the muscle. Two-way ANOVA revealed a significant interaction between Cd concentration and tissue on MT, which increased significantly in gills, decreased in digestive gland with 100 compared to 50 µg Cd/L; whereas in muscle a significant increase was observed with 25 µg Cd/L compared to control. The results show a significant effect of Cd in scallop's gills on CAT activity and α-T levels, highlighting this tissue as the primary target against relevant concentrations of metal in seawater. The effect on digestive gland and muscle was minimal. The overall results suggest that Cd toxicity is tissue-specific. This study will help reduce the existence knowledge gap regarding potential impacts of acute exposure to Cd in a bivalve species with high ecological and commercial importance, as well as identifying the most responsive biomarkers associated with Cd stress for monitoring assessment.


Subject(s)
Pectinidae , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Cadmium/analysis , Oxidative Stress , Catalase/metabolism , Pectinidae/metabolism , Reactive Oxygen Species/metabolism , Gills/metabolism , Water Pollutants, Chemical/analysis , Lipid Peroxidation , Biomarkers/metabolism
2.
Chemosphere ; 349: 140946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103654

ABSTRACT

This study investigates the effects of different inorganic arsenic (As III) concentrations (0, 125, 500 and 1000 µg As/L) following two exposure times (7 and 14 days) on gills, digestive gland and muscle of scallop Aequipecten tehuelchus from Patagonia, Argentina. A biochemical approach was used to investigate oxidative stress-related parameters after different As concentrations and exposure times. Although the accumulation of As was of the same order of magnitude in all tissues, the results showed distinct tissue-specific oxidative responses to this metalloid. Furthermore, the variation in exposure time had no significant effect on As accumulation in any of the three tissues. In gills, despite no reactive oxygen and nitrogen species (RONS) were detected, there was an increase in catalase (CAT) activity and metallothionein (MT) levels. Conversely, digestive gland showed RONS production without a rise in CAT and glutathione S-transferases (GST) activities, but with an increase in MT levels. In muscle, RONS production and CAT activity kept constant or decreased, while MT levels remained unchanged. In addition, exposure time demonstrated its critical role in gills by influencing the response of CAT, GST and MT, particularly at high As concentrations, while exposure time did not affect the biochemical stress parameters in the digestive gland and muscle. Interestingly, neither concentration of As produced lipid damage, showing the effectiveness of the antioxidant mechanisms to avoid it. These results emphasize that A. tehuelchus exhibited no time-dependent effects in response to As exposure, while showing tissue-specific responses characterized by significant concentration-dependent effects of As. This study provides a comprehensive insight by considering the combined effects of time and concentration of a contaminant and distinguishing its effects on specific tissues, a dimension often overlooked in the existing literature. Subsequent studies should prioritize the analysis of additional contaminants in species with increased sensitivity.


Subject(s)
Arsenic , Pectinidae , Water Pollutants, Chemical , Animals , Arsenic/analysis , Argentina , Water Pollutants, Chemical/analysis , Pectinidae/metabolism , Oxidative Stress , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Gills/metabolism , Catalase/metabolism , Lipid Peroxidation
3.
Mar Environ Res ; 188: 106011, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37201292

ABSTRACT

Scallops Aequipecten tehuelchus (Patagonia, Argentina) were exposed to 0, 2, 5 and 12 µg Cd/L for 7 and 14 days, causing in digestive gland a significant production of reactive oxygen and nitrogen species (RONS), induction of catalase (CAT) and glutathione S-transferase (GST) activities and metallothioneins (MT) synthesis. In gills, there was inhibition of GST and induction of CAT, MT and α-tocopherol (α-Toc). In muscle, a significant increment of MT was also registered and inhibition of CAT. Lipid peroxidation, measured as TBARS, was not promoted in any tissue. More significant effects were observed in digestive gland than in gills and muscle, evidencing the critical role of digestive gland in Cd accumulation and metabolisation. This research would evidence dose-dependent effects of Cd on MT, GST, CAT and α-Toc in the three organs assayed, as well as a time-dependent effect of Cd on the response of CAT, GST and TBARS in digestive gland.


Subject(s)
Pectinidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Cadmium/metabolism , Oxidative Stress , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Reactive Oxygen Species/metabolism , Catalase/metabolism , Lipid Peroxidation , Gills , Glutathione Transferase/metabolism , Water Pollutants, Chemical/analysis , Biomarkers/metabolism , Superoxide Dismutase/metabolism
4.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839058

ABSTRACT

Studies have described the occurrence of nanoparticles (NPs) in aquatic ecosystems, with particular attention to the widely commercialized carbon nanotubes (CNTs). Their presence in the environment raises concerns, especially regarding their toxicity when co-occurring with other pollutants such as metals. In the present study, changes to the metabolic capacity, oxidative, and neurologic status were evaluated in the presence of carboxylated multi-walled CNTs and chromium (Cr(III)) using two of the most ecologically and economically relevant filter feeder organisms: the clam species Ruditapes decussatus and R. philippinarum. Results indicated that although Cr, either alone or in combination with CNTs, was found in a similar concentration level in both species, a species-specific Cr accumulation was observed, with higher values in R. decussatus in comparison with R. philippinarum. Inhibition of antioxidant defenses and neurotoxic effects were detected only in R. philippinarum. The interaction between contaminants seems to have no effect in terms of antioxidant enzyme activities and neuro status. Nevertheless, synergistic activation of responses to both contaminants may have altered the metabolic capacity of bivalves, particularly evident in R. decussatus. While both clams are tolerant to both contaminants (alone and together), they showed a relevant accumulation capacity, which may represent a possible contaminant transfer to humans.

5.
Sci Total Environ ; 784: 146914, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33901954

ABSTRACT

In the last decades the use of rare earth elements (REEs) increased exponentially, including Terbium (Tb) which has been widely used in newly developed electronic devices. Also, the production and application of nanoparticles has been growing, being Carbon Nanotubes (CNTs) among the most commonly used. Accompanying such development patterns, emissions towards the aquatic environments are highly probable, with scarce information regarding the potential toxicity of these pollutants to inhabiting species, especially considering their mixture. In the present study the effects of Tb and CNTs exposure (acting alone or as a mixture) on native and invasive clams' species (Ruditapes decussatus and Ruditapes philippinarum, respectively) were evaluated, assessing clams' accumulation and metabolic capacities, oxidative status as well neurotoxic impacts. Results obtained after a 28-days exposure period showed that the accumulation of Tb in both species was not affected by the presence of the CNTs and similar Tb concentrations were found in both species. The effects caused by Tb and CNTs, acting alone or as a mixture induced greater alterations in R. philippinarum antioxidant capacity in comparison to native R. decussatus, but no cellular damages were observed in both species. Nevertheless, although metabolic impairment was only observed in clams exposed to Tb, loss of redox balance and neurotoxicity were evidenced by both species regardless the exposure treatment. These findings highlight the potential impacts caused by CNTs and Tb, which may affect clams' normal physiological functioning, impairing their reproduction and growth capacities. The obtained results point out the need for further investigation considering the mixture of pollutants.


Subject(s)
Bivalvia , Nanotubes, Carbon , Water Pollutants, Chemical , Animals , Bioaccumulation , Nanotubes, Carbon/toxicity , Terbium , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Arch Environ Contam Toxicol ; 78(3): 451-462, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31748941

ABSTRACT

The health status of the commercial Tehuelche scallop Aequipecten tehuelchus from San Román and El Riacho in San José gulf (Patagonia, Argentina) was evaluated through biomarkers widely used in ecotoxicological applications. Natural levels of arsenic (As) and cadmium (Cd) were measured to determine their potential relationships with fluctuations of several oxidative stress biomarkers in the scallop. Oxidative biomarkers, such as catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), metallothioneins (MT), reactive oxygen species (ROS), α-tocopherol (α-T), and lipid peroxidation (LPO) through thiobarbituric acid reactive substances (TBARS) and lipid radical (LR∙), were measured in gills, digestive gland, and muscle of Tehuelche scallop in winter (August 2015) and summer (January 2016). Levels of As and Cd and of most of the biomarkers (SOD, ROS, TBARS, and LR∙) showed strong seasonal variability in the three tissues. In general, the highest values were recorded in digestive gland. The Integrated Biomarker Response index indicated that the most stressed condition of A. tehuelchus was in summer in San Román. Additionally, the Integrated Biomarker Response index showed a strong relationship among tissues and As and Cd accumulation. This kind of approach could be used as an integrated tool to identify the health status of scallop A. tehuelchus from San José gulf.


Subject(s)
Bioaccumulation/drug effects , Environmental Monitoring/methods , Oxidative Stress/drug effects , Pectinidae/drug effects , Water Pollutants, Chemical/analysis , Animals , Argentina , Biomarkers/metabolism , Gills/metabolism , Lipid Peroxidation/drug effects , Muscles/metabolism , Pectinidae/metabolism , Reactive Oxygen Species/metabolism , Seafood/analysis , Seasons , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...